Jump to content

Openai/692b0130-6a64-800a-8103-b4de485f6aa0

From freem


This conversation was exported from ChatGPT[1]

gpt-5-t-mini[edit | edit source]

User: if everyone on the planet peed into lake superior at the same time, how much would it increase the lake temp.[edit | edit source]

if everyone on the planet peed into lake superior at the same time, how much would it increase the lake temp.

Assistant: Short answer[edit | edit source]

Short answer[edit | edit source]

Almost zero — on the order of 10⁻⁵ °C (≈ 1.1×10⁻⁵ °C, about 11 microkelvin). Practically undetectable.

How I calculated it (step-by-step arithmetic)[edit | edit source]

Assumptions

  • World population ≈ 8.0×10⁹ people.
  • Each person pees 0.5 L = 0.0005 m³ in that one event (reasonable single-event volume; results scale linearly).
  • Lake Superior volume ≈ 12,100 km³ = 12,100 × 10⁹ m³ = 1.21×10¹³ m³ (standard approximate value).
  • Density of water = 1000 kg/m³.
  • Urine (initial) temperature ≈ 37.0 °C; lake temperature assumed 4.0 °C (so ΔT = 33.0 K).
  • No heat losses to air/ground; perfect mixing (this is a conservative simple energy-balance model).

Step math

  1. Total urine volume people × urine per person = 8.0×109×0.0005 m3=4.0×106 m38.0\times10^{9} \times 0.0005\ \text{m}^3 = 4.0\times10^{6}\ \text{m}^38.0×109×0.0005 m3=4.0×106 m3.
  2. Masses (density 1000 kg/m³) - Mass of urine = 4.0×106 m3×1000 kg/m3=4.0×109 kg4.0\times10^{6}\ \text{m}^3 \times 1000\ \text{kg/m}^3 = 4.0\times10^{9}\ \text{kg}4.0×106 m3×1000 kg/m3=4.0×109 kg. - Mass of lake = 1.21×1013 m3×1000 kg/m3=1.21×1016 kg1.21\times10^{13}\ \text{m}^3 \times 1000\ \text{kg/m}^3 = 1.21\times10^{16}\ \text{kg}1.21×1013 m3×1000 kg/m3=1.21×1016 kg.
  3. Final temperature (mixing) — using conservation of energy: Tfinal=mlakeTlake+murineTurinemlake+murineT_{\text{final}} = \dfrac{m_{\text{lake}}T_{\text{lake}} + m_{\text{urine}}T_{\text{urine}}}{m_{\text{lake}}+m_{\text{urine}}}Tfinal​=mlake​+murine​mlake​Tlake​+murine​Turine​​. Temperature increase ≈ murinemlake+murine×(Turine−Tlake)\dfrac{m_{\text{urine}}}{m_{\text{lake}}+m_{\text{urine}}}\times (T_{\text{urine}}-T_{\text{lake}})mlake​+murine​murine​​×(Turine​−Tlake​). Fraction = 4.0×1091.21×1016+4.0×109≈3.3059×10−7 \dfrac{4.0\times10^{9}}{1.21\times10^{16} + 4.0\times10^{9}} \approx 3.3059\times10^{-7}1.21×1016+4.0×1094.0×109​≈3.3059×10−7. ΔT = fraction × 33.0 K ≈ 3.3059×10−7×33.0≈1.09×10−5 K3.3059\times10^{-7}\times33.0 \approx 1.09\times10^{-5}\ \text{K}3.3059×10−7×33.0≈1.09×10−5 K.

So the lake would warm by about 1.09×10⁻⁵ °C, i.e. ≈ 11 microkelvin.

Sensitivity / sanity checks[edit | edit source]

  • If average pee per person were 0.2 L instead of 0.5 L, the warming would be ≈ 4.4×10⁻⁶ °C.
  • If it were 1.0 L each (very generous), warming ≈ 2.2×10⁻⁵ °C.
  • Even in the extreme, this is utterly negligible compared with natural daily/seasonal temperature variations (which are degrees, not microdegrees).

Intuition / real-world note[edit | edit source]

Locally — right where millions of people stood — the water would be locally warmed slightly and chemically changed; but once mixed into the whole lake the effect disappears. In short: hilarious thought experiment, negligible climate or thermal effect.

References[edit | edit source]

  1. "Temperature change calculation". ChatGPT. Retrieved 2025-11-29.