Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/692b0130-6a64-800a-8103-b4de485f6aa0
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== How I calculated it (step-by-step arithmetic) === Assumptions * World population ≈ 8.0×10⁹ people. * Each person pees 0.5 L = 0.0005 m³ in that one event (reasonable single-event volume; results scale linearly). * Lake Superior volume ≈ 12,100 km³ = 12,100 × 10⁹ m³ = 1.21×10¹³ m³ (standard approximate value). * Density of water = 1000 kg/m³. * Urine (initial) temperature ≈ 37.0 °C; lake temperature assumed 4.0 °C (so ΔT = 33.0 K). * No heat losses to air/ground; perfect mixing (this is a conservative simple energy-balance model). Step math # Total urine volume people × urine per person = 8.0×109×0.0005 m3=4.0×106 m38.0\times10^{9} \times 0.0005\ \text{m}^3 = 4.0\times10^{6}\ \text{m}^38.0×109×0.0005 m3=4.0×106 m3. # Masses (density 1000 kg/m³) - Mass of urine = 4.0×106 m3×1000 kg/m3=4.0×109 kg4.0\times10^{6}\ \text{m}^3 \times 1000\ \text{kg/m}^3 = 4.0\times10^{9}\ \text{kg}4.0×106 m3×1000 kg/m3=4.0×109 kg. - Mass of lake = 1.21×1013 m3×1000 kg/m3=1.21×1016 kg1.21\times10^{13}\ \text{m}^3 \times 1000\ \text{kg/m}^3 = 1.21\times10^{16}\ \text{kg}1.21×1013 m3×1000 kg/m3=1.21×1016 kg. # Final temperature (mixing) — using conservation of energy: Tfinal=mlakeTlake+murineTurinemlake+murineT_{\text{final}} = \dfrac{m_{\text{lake}}T_{\text{lake}} + m_{\text{urine}}T_{\text{urine}}}{m_{\text{lake}}+m_{\text{urine}}}Tfinal=mlake+murinemlakeTlake+murineTurine. Temperature increase ≈ murinemlake+murine×(Turine−Tlake)\dfrac{m_{\text{urine}}}{m_{\text{lake}}+m_{\text{urine}}}\times (T_{\text{urine}}-T_{\text{lake}})mlake+murinemurine×(Turine−Tlake). Fraction = 4.0×1091.21×1016+4.0×109≈3.3059×10−7 \dfrac{4.0\times10^{9}}{1.21\times10^{16} + 4.0\times10^{9}} \approx 3.3059\times10^{-7}1.21×1016+4.0×1094.0×109≈3.3059×10−7. ΔT = fraction × 33.0 K ≈ 3.3059×10−7×33.0≈1.09×10−5 K3.3059\times10^{-7}\times33.0 \approx 1.09\times10^{-5}\ \text{K}3.3059×10−7×33.0≈1.09×10−5 K. So the lake would warm by about 1.09×10⁻⁵ °C, i.e. ≈ 11 microkelvin.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)