Jump to content

Openai/69523a9e-0d00-800b-b446-9253ad0ab5a2

From freem
Revision as of 05:24, 30 December 2025 by Lukegao (talk | contribs) (by freem.ai...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


This conversation was exported from ChatGPT[1]

gpt-5-2-thinking[edit | edit source]

User: Numbers k such that k![edit | edit source]

Numbers k such that k! + 59 is prime.

Assistant: Let kkk be a nonnegative integer.[edit | edit source]

Let kkk be a nonnegative integer.

  • If k≥59k \ge 59k≥59, then 59∣k!59 \mid k!59∣k!, so k!+59≡0(mod59),k!+59 \equiv 0 \pmod{59},k!+59≡0(mod59), and since k!+59>59k!+59>59k!+59>59, it’s composite. So we only need to check 0≤k≤580\le k\le 580≤k≤58.

A direct primality check for 0≤k≤580\le k\le 580≤k≤58 shows that k!+59k!+59k!+59 is prime exactly for

k∈{2,4,5,7,11,12,17,21,26,27}.\boxed{k \in \{2,4,5,7,11,12,17,21,26,27\}.}k∈{2,4,5,7,11,12,17,21,26,27}.​ Corresponding primes:

  • 2!+59=612!+59=612!+59=61
  • 4!+59=834!+59=834!+59=83
  • 5!+59=1795!+59=1795!+59=179
  • 7!+59=50997!+59=50997!+59=5099
  • 11!+59=3991685911!+59=3991685911!+59=39916859
  • 12!+59=47900165912!+59=47900165912!+59=479001659
  • 17!+59=35568742809605917!+59=35568742809605917!+59=355687428096059
  • 21!+59=5109094217170944005921!+59=5109094217170944005921!+59=51090942171709440059
  • 26!+59=40329146112660563558400005926!+59=40329146112660563558400005926!+59=403291461126605635584000059
  • 27!+59=1088886945041835216076800005927!+59=1088886945041835216076800005927!+59=10888869450418352160768000059

References[edit | edit source]

  1. "Primes of k!+59". ChatGPT. Retrieved 2025-12-29.