Jump to content

Openai/6936f996-e124-8004-a264-0b3da0e38976

From freem
Revision as of 05:22, 9 December 2025 by Lukegao (talk | contribs) (by freem.ai...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


This conversation was exported from ChatGPT[1]

gpt-5-1-thinking[edit | edit source]

User: Can it be taken analytically?[edit | edit source]

Can it be taken analytically?

Assistant: Yes, it can be integrated in closed form.[edit | edit source]

Yes, it can be integrated in closed form.

∫3x3−x2+2x−4x2−3x+2 dx=x2−3x+2(x2+134x+1018)+13516ln⁡ ⁣∣2x−3+2x2−3x+2∣+C.\int \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx = \sqrt{x^{2}-3x+2}\left(x^{2}+\frac{13}{4}x+\frac{101}{8}\right) +\frac{135}{16}\ln\!\left|2x-3+2\sqrt{x^{2}-3x+2}\right|+C.∫x2−3x+2​3x3−x2+2x−4​dx=x2−3x+2​(x2+413​x+8101​)+16135​ln​2x−3+2x2−3x+2​​+C. Sketch of how to get it:

  1. Denote Q(x)=x2−3x+2Q(x)=x^{2}-3x+2Q(x)=x2−3x+2. Look for an antiderivative of the form Q(x)(Ax2+Bx+C)+KQ(x)\sqrt{Q(x)}(Ax^{2}+Bx+C)+\dfrac{K}{\sqrt{Q(x)}}Q(x)​(Ax2+Bx+C)+Q(x)​K​.
  2. Differentiate this expression, collect terms over Q(x)\sqrt{Q(x)}Q(x)​, and match the resulting polynomial in the numerator with 3x3−x2+2x−43x^{3}-x^{2}+2x-43x3−x2+2x−4. Solving for A,B,C,KA,B,C,KA,B,C,K gives A=1,  B=134,  C=1018,  K=13516A=1,\;B=\tfrac{13}{4},\;C=\tfrac{101}{8},\;K=\tfrac{135}{16}A=1,B=413​,C=8101​,K=16135​.
  3. The remaining integral ∫dxx2−3x+2\displaystyle \int \frac{dx}{\sqrt{x^{2}-3x+2}}∫x2−3x+2​dx​ is handled by completing the square x2−3x+2=(x−32)2−(12)2x^{2}-3x+2=(x-\tfrac32)^2-(\tfrac12)^2x2−3x+2=(x−23​)2−(21​)2 and using ∫dxx2−a2=ln⁡∣x+x2−a2∣+C.\displaystyle \int \frac{dx}{\sqrt{x^{2}-a^{2}}} =\ln\left|x+\sqrt{x^{2}-a^{2}}\right|+C.∫x2−a2​dx​=ln​x+x2−a2​​+C.

Combining gives the result above.

User: So, what is the analytical answer, and then calculate the answer from the analytical answer to get number.[edit | edit source]

So, what is the analytical answer, and then calculate the answer from the analytical answer to get number.

Assistant: Let’s write the integral clearly:[edit | edit source]

Let’s write the integral clearly:

∫3x3−x2+2x−4x2−3x+2 dx\int \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx∫x2−3x+2​3x3−x2+2x−4​dx

1. Analytical antiderivative[edit | edit source]

One antiderivative is

F(x)=x2−3x+2(x2+134x+1018)+13516ln⁡ ⁣∣2x−3+2x2−3x+2∣+C.F(x)=\sqrt{x^{2}-3x+2}\left(x^{2}+\frac{13}{4}x+\frac{101}{8}\right) +\frac{135}{16}\ln\!\left|2x-3+2\sqrt{x^{2}-3x+2}\right|+C.F(x)=x2−3x+2​(x2+413​x+8101​)+16135​ln​2x−3+2x2−3x+2​​+C. (Differentiating F(x)F(x)F(x) gives exactly the integrand.)

2. Definite integral (taking limits[edit | edit source]

0 0 to 1 1)

Your picture shows a lower limit 000; the natural upper limit, given the domain of (x−1)(x−2)\sqrt{(x-1)(x-2)}(x−1)(x−2)​, is 111. Assuming the integral is

∫013x3−x2+2x−4x2−3x+2 dx,\int_{0}^{1} \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx,∫01​x2−3x+2​3x3−x2+2x−4​dx, we plug into F(x)F(x)F(x):

∫013x3−x2+2x−4x2−3x+2 dx=F(1)−F(0)=−10182−13516ln⁡ ⁣(3−22).\int_{0}^{1} \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx =F(1)-F(0) =-\frac{101}{8}\sqrt{2}-\frac{135}{16}\ln\!\bigl(3-2\sqrt{2}\bigr).∫01​x2−3x+2​3x3−x2+2x−4​dx=F(1)−F(0)=−8101​2​−16135​ln(3−22​). Numerically (to 10 digits):

∫01⋯dx≈−2.981266944.\int_{0}^{1} \cdots dx \approx -2.981266944.∫01​⋯dx≈−2.981266944. Confidence this is correct: ~99% (symbolically checked by differentiating the antiderivative and by direct numeric integration).

User: I did not ask numerically integrate.[edit | edit source]

I did not ask numerically integrate. Calculate from your analytical answer to definite integral.

Assistant: Let me assume the definite integral is[edit | edit source]

Let me assume the definite integral is

I=∫013x3−x2+2x−4x2−3x+2 dx,I=\int_{0}^{1} \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx ,I=∫01​x2−3x+2​3x3−x2+2x−4​dx, since x2−3x+2=(x−1)(x−2)\sqrt{x^{2}-3x+2}=\sqrt{(x-1)(x-2)}x2−3x+2​=(x−1)(x−2)​ is real on [0,1][0,1][0,1].

1. Analytical evaluation[edit | edit source]

An antiderivative is

F(x)=x2−3x+2(x2+134x+1018)+13516ln⁡ ⁣(2x−3+2x2−3x+2).F(x)=\sqrt{x^{2}-3x+2}\left(x^{2}+\frac{13}{4}x+\frac{101}{8}\right) +\frac{135}{16}\ln\!\bigl(2x-3+2\sqrt{x^{2}-3x+2}\bigr).F(x)=x2−3x+2​(x2+413​x+8101​)+16135​ln(2x−3+2x2−3x+2​). So

I=F(1)−F(0).I = F(1)-F(0).I=F(1)−F(0).

  • At x=1x=1x=1: 1−3+2=0\sqrt{1-3+2}=01−3+2​=0, and the log term is ln⁡(0)\ln(0)ln(0), which → −∞-\infty−∞, but multiplied by 0 from the prefactor in the derivation the limit is finite; easier is to use the symbolic simplification already done, which gives the exact result below.

Carrying out the algebra (which SymPy also confirms) gives

I=−10182−13516ln⁡(3−22).I=-\frac{101}{8}\sqrt{2}-\frac{135}{16}\ln(3-2\sqrt{2}).I=−8101​2​−16135​ln(3−22​). Using (3−22)(3+22)=1⇒ln⁡(3−22)=−ln⁡(3+22)(3-2\sqrt{2})(3+2\sqrt{2})=1\Rightarrow \ln(3-2\sqrt{2})=-\ln(3+2\sqrt{2})(3−22​)(3+22​)=1⇒ln(3−22​)=−ln(3+22​), a slightly nicer exact form is

 I=−10182+13516ln⁡(3+22) .\boxed{\,I=-\frac{101}{8}\sqrt{2}+\frac{135}{16}\ln(3+2\sqrt{2})\,}.I=−8101​2​+16135​ln(3+22​)​. That is the analytical answer.

2. Numerical value from this formula (no numerical integration)[edit | edit source]

Use

2≈1.4142135623730950,ln⁡(3+22)≈1.7627471740390861.\sqrt{2}\approx 1.4142135623730950,\qquad \ln(3+2\sqrt{2})\approx 1.7627471740390861.2​≈1.4142135623730950,ln(3+22​)≈1.7627471740390861. Compute the two terms:

−10182≈−12.625⋅1.4142135623730950≈−17.854446224960325,-\frac{101}{8}\sqrt{2} \approx -12.625\cdot 1.4142135623730950 \approx -17.854446224960325,−8101​2​≈−12.625⋅1.4142135623730950≈−17.854446224960325, 13516ln⁡(3+22)=8.4375⋅1.7627471740390861≈14.873179280954789.\frac{135}{16}\ln(3+2\sqrt{2}) =8.4375\cdot 1.7627471740390861 \approx 14.873179280954789.16135​ln(3+22​)=8.4375⋅1.7627471740390861≈14.873179280954789. Add them:

I≈−17.854446224960325+14.873179280954789≈−2.981266944005536.I \approx -17.854446224960325 +14.873179280954789 \approx -2.981266944005536.I≈−17.854446224960325+14.873179280954789≈−2.981266944005536. So

I≈−2.9812669440\boxed{I\approx -2.9812669440}I≈−2.9812669440​ (from the closed-form expression, accuracy ≳10 significant digits).

References[edit | edit source]

  1. "Analytical integration solution". ChatGPT. Retrieved 2025-12-09.