Openai/69630fa9-02d4-8012-8ef2-84c443c04922
This conversation was exported from ChatGPT[1]
gpt-5-2-pro edit
User: Are there only finitely many solutions to\\prodi \binom{2mi}{mi}\prodj \binom{2nj}{nj}\with the $mi,nj$ distinct? edit
Are there only finitely many solutions to\[\prod_i \binom{2m_i}{m_i}=\prod_j \binom{2n_j}{n_j}\]with the $m_i,n_j$ distinct?
Assistant: No. edit
No. In fact there are infinitely many such identities with all indices distinct.
Write
Bt:=(2tt)(t∈Z≥0).B_t:=\binom{2t}{t}\qquad(t\in\mathbb Z_{\ge 0}).Bt:=(t2t)(t∈Z≥0). A standard ratio computation gives
BtBt+1=(2tt)(2t+2t+1)=(t+1)2(2t+2)(2t+1)=t+12(2t+1).(1)\frac{B_t}{B_{t+1}} =\frac{\binom{2t}{t}}{\binom{2t+2}{t+1}} =\frac{(t+1)^2}{(2t+2)(2t+1)} =\frac{t+1}{2(2t+1)}. \tag{1}Bt+1Bt=(t+12t+2)(t2t)=(2t+2)(2t+1)(t+1)2=2(2t+1)t+1.(1) Now fix an integer a≥2a\ge 2a≥2 and set
c:=8a2+8a+1.c:=8a^2+8a+1.c:=8a2+8a+1. Consider the six indices
m-side: {a, 2a+2, c},n-side: {a+1, 2a, c+1}.m\text{-side: } \{a,\;2a+2,\;c\}, \qquad n\text{-side: } \{a+1,\;2a,\;c+1\}.m-side: {a,2a+2,c},n-side: {a+1,2a,c+1}. For a≥2a\ge2a≥2 these are pairwise distinct (in particular the two sides are disjoint).
We claim
Ba B2a+2 Bc = Ba+1 B2a Bc+1,(2)B_a\,B_{2a+2}\,B_c \;=\; B_{a+1}\,B_{2a}\,B_{c+1}, \tag{2}BaB2a+2Bc=Ba+1B2aBc+1,(2) i.e.
(2aa)(4a+42a+2)(2cc)=(2a+2a+1)(4a2a)(2c+2c+1).\binom{2a}{a}\binom{4a+4}{2a+2}\binom{2c}{c} = \binom{2a+2}{a+1}\binom{4a}{2a}\binom{2c+2}{c+1}.(a2a)(2a+24a+4)(c2c)=(a+12a+2)(2a4a)(c+12c+2). To prove (2), divide both sides by Ba+1B2aBc+1B_{a+1}B_{2a}B_{c+1}Ba+1B2aBc+1; it suffices to show
BaBa+1⋅B2a+2B2a⋅BcBc+1=1.(3)\frac{B_a}{B_{a+1}}\cdot \frac{B_{2a+2}}{B_{2a}}\cdot \frac{B_c}{B_{c+1}}=1. \tag{3}Ba+1Ba⋅B2aB2a+2⋅Bc+1Bc=1.(3) Using (1),
BaBa+1=a+12(2a+1),BcBc+1=c+12(2c+1).\frac{B_a}{B_{a+1}}=\frac{a+1}{2(2a+1)}, \qquad \frac{B_c}{B_{c+1}}=\frac{c+1}{2(2c+1)}.Ba+1Ba=2(2a+1)a+1,Bc+1Bc=2(2c+1)c+1. Also,
B2a+2B2a=B2a+2B2a+1⋅B2a+1B2a=2a+22(4a+3)⋅2a+12(4a+1))−1=2(4a+3)(4a+1)(a+1)(2a+1).\frac{B_{2a+2}}{B_{2a}} =\frac{B_{2a+2}}{B_{2a+1}}\cdot \frac{B_{2a+1}}{B_{2a}} =\frac{2a+2}{2(4a+3)}\cdot \frac{2a+1}{2(4a+1)}\Bigg)^{-1} =\frac{2(4a+3)(4a+1)}{(a+1)(2a+1)}.B2aB2a+2=B2a+1B2a+2⋅B2aB2a+1=2(4a+3)2a+2⋅2(4a+1)2a+1)−1=(a+1)(2a+1)2(4a+3)(4a+1). So the product of the first two factors in (3) is
a+12(2a+1)⋅2(4a+3)(4a+1)(a+1)(2a+1)=(4a+3)(4a+1)(2a+1)2.\frac{a+1}{2(2a+1)}\cdot \frac{2(4a+3)(4a+1)}{(a+1)(2a+1)} =\frac{(4a+3)(4a+1)}{(2a+1)^2}.2(2a+1)a+1⋅(a+1)(2a+1)2(4a+3)(4a+1)=(2a+1)2(4a+3)(4a+1). Thus (3) will hold provided
BcBc+1=(2a+1)2(4a+3)(4a+1).\frac{B_c}{B_{c+1}}=\frac{(2a+1)^2}{(4a+3)(4a+1)}.Bc+1Bc=(4a+3)(4a+1)(2a+1)2. But with c=8a2+8a+1c=8a^2+8a+1c=8a2+8a+1,
c+1=8a2+8a+2=2(2a+1)2,2c+1=16a2+16a+3=(4a+3)(4a+1),c+1=8a^2+8a+2=2(2a+1)^2,\qquad 2c+1=16a^2+16a+3=(4a+3)(4a+1),c+1=8a2+8a+2=2(2a+1)2,2c+1=16a2+16a+3=(4a+3)(4a+1), so indeed
BcBc+1=c+12(2c+1)=2(2a+1)22(4a+3)(4a+1)=(2a+1)2(4a+3)(4a+1).\frac{B_c}{B_{c+1}}=\frac{c+1}{2(2c+1)} =\frac{2(2a+1)^2}{2(4a+3)(4a+1)} =\frac{(2a+1)^2}{(4a+3)(4a+1)}.Bc+1Bc=2(2c+1)c+1=2(4a+3)(4a+1)2(2a+1)2=(4a+3)(4a+1)(2a+1)2. This completes the proof of (2).
So for every a≥2a\ge2a≥2 we get a distinct solution with all indices distinct:
(2aa)(4a+42a+2)(2(8a2+8a+1)8a2+8a+1)=(2a+2a+1)(4a2a)(2(8a2+8a+2)8a2+8a+2)\boxed{\binom{2a}{a}\binom{4a+4}{2a+2}\binom{2(8a^2+8a+1)}{8a^2+8a+1} = \binom{2a+2}{a+1}\binom{4a}{2a}\binom{2(8a^2+8a+2)}{8a^2+8a+2}}(a2a)(2a+24a+4)(8a2+8a+12(8a2+8a+1))=(a+12a+2)(2a4a)(8a2+8a+22(8a2+8a+2)) and hence there are infinitely many solutions.
Example a=2a=2a=2:
(42)(126)(9849)=(63)(84)(10050),\binom{4}{2}\binom{12}{6}\binom{98}{49} = \binom{6}{3}\binom{8}{4}\binom{100}{50},(24)(612)(4998)=(36)(48)(50100), i.e. 6⋅924⋅(9849)=20⋅70⋅(10050)6\cdot924\cdot\binom{98}{49}=20\cdot70\cdot\binom{100}{50}6⋅924⋅(4998)=20⋅70⋅(50100), with indices {2,6,49,3,4,50}\{2,6,49,3,4,50\}{2,6,49,3,4,50} all distinct.
References edit
- ↑ "Infinitely many solutions". ChatGPT. Retrieved 2026-01-12.