Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69630fa9-02d4-8012-8ef2-84c443c04922
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{DISPLAYTITLE:Infinitely many solutions}} ''This conversation was exported from ChatGPT''<ref>{{cite web|title=Infinitely many solutions|url=https://chatgpt.com/share/69630fa9-02d4-8012-8ef2-84c443c04922|publisher=ChatGPT|access-date=2026-01-12}}</ref> == gpt-5-2-pro == === User: Are there only finitely many solutions to\\prodi \binom{2mi}{mi}\prodj \binom{2nj}{nj}\with the $mi,nj$ distinct? === Are there only finitely many solutions to\[\prod_i \binom{2m_i}{m_i}=\prod_j \binom{2n_j}{n_j}\]with the $m_i,n_j$ distinct? === Assistant: No. === No. In fact there are infinitely many such identities with all indices distinct. Write Bt:=(2tt)(tβZβ₯0).B_t:=\binom{2t}{t}\qquad(t\in\mathbb Z_{\ge 0}).Btβ:=(t2tβ)(tβZβ₯0β). A standard ratio computation gives BtBt+1=(2tt)(2t+2t+1)=(t+1)2(2t+2)(2t+1)=t+12(2t+1).(1)\frac{B_t}{B_{t+1}} =\frac{\binom{2t}{t}}{\binom{2t+2}{t+1}} =\frac{(t+1)^2}{(2t+2)(2t+1)} =\frac{t+1}{2(2t+1)}. \tag{1}Bt+1βBtββ=(t+12t+2β)(t2tβ)β=(2t+2)(2t+1)(t+1)2β=2(2t+1)t+1β.(1) Now fix an integer aβ₯2a\ge 2aβ₯2 and set c:=8a2+8a+1.c:=8a^2+8a+1.c:=8a2+8a+1. Consider the six indices m-side:Β {a,β β2a+2,β βc},n-side:Β {a+1,β β2a,β βc+1}.m\text{-side: } \{a,\;2a+2,\;c\}, \qquad n\text{-side: } \{a+1,\;2a,\;c+1\}.m-side:Β {a,2a+2,c},n-side:Β {a+1,2a,c+1}. For aβ₯2a\ge2aβ₯2 these are pairwise distinct (in particular the two sides are disjoint). We claim BaβB2a+2βBcβ β=β βBa+1βB2aβBc+1,(2)B_a\,B_{2a+2}\,B_c \;=\; B_{a+1}\,B_{2a}\,B_{c+1}, \tag{2}BaβB2a+2βBcβ=Ba+1βB2aβBc+1β,(2) i.e. (2aa)(4a+42a+2)(2cc)=(2a+2a+1)(4a2a)(2c+2c+1).\binom{2a}{a}\binom{4a+4}{2a+2}\binom{2c}{c} = \binom{2a+2}{a+1}\binom{4a}{2a}\binom{2c+2}{c+1}.(a2aβ)(2a+24a+4β)(c2cβ)=(a+12a+2β)(2a4aβ)(c+12c+2β). To prove (2), divide both sides by Ba+1B2aBc+1B_{a+1}B_{2a}B_{c+1}Ba+1βB2aβBc+1β; it suffices to show BaBa+1β B2a+2B2aβ BcBc+1=1.(3)\frac{B_a}{B_{a+1}}\cdot \frac{B_{2a+2}}{B_{2a}}\cdot \frac{B_c}{B_{c+1}}=1. \tag{3}Ba+1βBaβββ B2aβB2a+2βββ Bc+1βBcββ=1.(3) Using (1), BaBa+1=a+12(2a+1),BcBc+1=c+12(2c+1).\frac{B_a}{B_{a+1}}=\frac{a+1}{2(2a+1)}, \qquad \frac{B_c}{B_{c+1}}=\frac{c+1}{2(2c+1)}.Ba+1βBaββ=2(2a+1)a+1β,Bc+1βBcββ=2(2c+1)c+1β. Also, B2a+2B2a=B2a+2B2a+1β B2a+1B2a=2a+22(4a+3)β 2a+12(4a+1))β1=2(4a+3)(4a+1)(a+1)(2a+1).\frac{B_{2a+2}}{B_{2a}} =\frac{B_{2a+2}}{B_{2a+1}}\cdot \frac{B_{2a+1}}{B_{2a}} =\frac{2a+2}{2(4a+3)}\cdot \frac{2a+1}{2(4a+1)}\Bigg)^{-1} =\frac{2(4a+3)(4a+1)}{(a+1)(2a+1)}.B2aβB2a+2ββ=B2a+1βB2a+2βββ B2aβB2a+1ββ=2(4a+3)2a+2ββ 2(4a+1)2a+1β)β1=(a+1)(2a+1)2(4a+3)(4a+1)β. So the product of the first two factors in (3) is a+12(2a+1)β 2(4a+3)(4a+1)(a+1)(2a+1)=(4a+3)(4a+1)(2a+1)2.\frac{a+1}{2(2a+1)}\cdot \frac{2(4a+3)(4a+1)}{(a+1)(2a+1)} =\frac{(4a+3)(4a+1)}{(2a+1)^2}.2(2a+1)a+1ββ (a+1)(2a+1)2(4a+3)(4a+1)β=(2a+1)2(4a+3)(4a+1)β. Thus (3) will hold provided BcBc+1=(2a+1)2(4a+3)(4a+1).\frac{B_c}{B_{c+1}}=\frac{(2a+1)^2}{(4a+3)(4a+1)}.Bc+1βBcββ=(4a+3)(4a+1)(2a+1)2β. But with c=8a2+8a+1c=8a^2+8a+1c=8a2+8a+1, c+1=8a2+8a+2=2(2a+1)2,2c+1=16a2+16a+3=(4a+3)(4a+1),c+1=8a^2+8a+2=2(2a+1)^2,\qquad 2c+1=16a^2+16a+3=(4a+3)(4a+1),c+1=8a2+8a+2=2(2a+1)2,2c+1=16a2+16a+3=(4a+3)(4a+1), so indeed BcBc+1=c+12(2c+1)=2(2a+1)22(4a+3)(4a+1)=(2a+1)2(4a+3)(4a+1).\frac{B_c}{B_{c+1}}=\frac{c+1}{2(2c+1)} =\frac{2(2a+1)^2}{2(4a+3)(4a+1)} =\frac{(2a+1)^2}{(4a+3)(4a+1)}.Bc+1βBcββ=2(2c+1)c+1β=2(4a+3)(4a+1)2(2a+1)2β=(4a+3)(4a+1)(2a+1)2β. This completes the proof of (2). So for every aβ₯2a\ge2aβ₯2 we get a distinct solution with all indices distinct: (2aa)(4a+42a+2)(2(8a2+8a+1)8a2+8a+1)=(2a+2a+1)(4a2a)(2(8a2+8a+2)8a2+8a+2)\boxed{\binom{2a}{a}\binom{4a+4}{2a+2}\binom{2(8a^2+8a+1)}{8a^2+8a+1} = \binom{2a+2}{a+1}\binom{4a}{2a}\binom{2(8a^2+8a+2)}{8a^2+8a+2}}(a2aβ)(2a+24a+4β)(8a2+8a+12(8a2+8a+1)β)=(a+12a+2β)(2a4aβ)(8a2+8a+22(8a2+8a+2)β)β and hence there are infinitely many solutions. Example a=2a=2a=2: (42)(126)(9849)=(63)(84)(10050),\binom{4}{2}\binom{12}{6}\binom{98}{49} = \binom{6}{3}\binom{8}{4}\binom{100}{50},(24β)(612β)(4998β)=(36β)(48β)(50100β), i.e. 6β 924β (9849)=20β 70β (10050)6\cdot924\cdot\binom{98}{49}=20\cdot70\cdot\binom{100}{50}6β 924β (4998β)=20β 70β (50100β), with indices {2,6,49,3,4,50}\{2,6,49,3,4,50\}{2,6,49,3,4,50} all distinct. == References == <references /> [[Category:ChatGPT Shares]] [[Category:openai]]
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite web
(
edit
)
Module:Citation/CS1
(
edit
)
Module:Citation/CS1/COinS
(
edit
)
Module:Citation/CS1/Configuration
(
edit
)
Module:Citation/CS1/Date validation
(
edit
)
Module:Citation/CS1/Identifiers
(
edit
)
Module:Citation/CS1/Utilities
(
edit
)
Module:Citation/CS1/Whitelist
(
edit
)
Module:Citation/CS1/styles.css
(
edit
)