Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/695dfc16-b2ac-8005-980b-b86d96450929
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 我們用 座標幾何逐項檢查,仔細計算每一步。 === 我們用 座標幾何逐項檢查,仔細計算每一步。 ==== - A=(5,2),B=(3,9),C=(5,11)A=(5,2), B=(3,9), C=(5,11)A=(5,2),B=(3,9),C=(5,11) ==== ==== 公式: ==== G=(xA+xB+xC3,yA+yB+yC3)G = \left(\frac{x_A+x_B+x_C}{3}, \frac{y_A+y_B+y_C}{3}\right)G=(3xA+xB+xC,3yA+yB+yC) 計算: xG=5+3+53=133≈4.3333x_G = \frac{5+3+5}{3} = \frac{13}{3} \approx 4.3333xG=35+3+5=313≈4.3333 yG=2+9+113=223≈7.3333y_G = \frac{2+9+11}{3} = \frac{22}{3} \approx 7.3333yG=32+9+11=322≈7.3333 * 題目選項給的 S=(10/3,20/3)≈(3.333,6.667)S=(10/3, 20/3) \approx (3.333,6.667)S=(10/3,20/3)≈(3.333,6.667) ❌ ✅ 結論 (1) 錯誤 ==== - S = (13/3,22/3) ==== * Z=(4,3) → Z=(4,3) 計算距離: d=(xS−xZ)2+(yS−yZ)2=(13/3−4)2+(22/3−3)2=(13/3−12/3)2+(22/3−9/3)2=(1/3)2+(13/3)2=1/9+169/9=170/9=1703d = \sqrt{(x_S-x_Z)^2 + (y_S-y_Z)^2} = \sqrt{(13/3-4)^2 + (22/3-3)^2} = \sqrt{(13/3-12/3)^2 + (22/3-9/3)^2} = \sqrt{(1/3)^2 + (13/3)^2} = \sqrt{1/9 + 169/9} = \sqrt{170/9} = \frac{\sqrt{170}}{3}d=(xS−xZ)2+(yS−yZ)2=(13/3−4)2+(22/3−3)2=(13/3−12/3)2+(22/3−9/3)2=(1/3)2+(13/3)2=1/9+169/9=170/9=3170 * 選項寫的是 √190 /3 ❌ ✅ 結論 (2) 錯誤 ==== 直線 BC: ==== * B=(3,9), C=(5,11) * 斜率 m=(11−9)/(5−3)=2/2=1m=(11-9)/(5-3)=2/2=1m=(11−9)/(5−3)=2/2=1 * 直線方程式: y−9=1(x−3)⇒y=x+6y-9 = 1(x-3) \Rightarrow y = x+6y−9=1(x−3)⇒y=x+6 距離公式: d=∣Ax0+By0+C∣A2+B2d = \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}d=A2+B2∣Ax0+By0+C∣ 將直線寫成一般式 x−y+6=0x - y + 6=0x−y+6=0 → A=1,B=-1,C=6 * Z'=(4,17) d=∣1∗4+(−1)∗17+6∣12+(−1)2=∣4−17+6∣2=∣−7∣2=72=722d = \frac{|1''4 + (-1)''17 +6|}{\sqrt{1^2+(-1)^2}} = \frac{|4-17+6|}{\sqrt{2}} = \frac{|-7|}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7\sqrt{2}}{2}d=12+(−1)2∣1∗4+(−1)∗17+6∣=2∣4−17+6∣=2∣−7∣=27=272 ✔ 與選項一致 ✅ 結論 (3) 正確 ==== - ∠CBA → 在 B 頂點 ==== * 向量: BC⃗=C−B=(5−3,11−9)=(2,2)\vec{BC} = C-B = (5-3, 11-9) = (2,2)BC=C−B=(5−3,11−9)=(2,2) BA⃗=A−B=(5−3,2−9)=(2,−7)\vec{BA} = A-B = (5-3,2-9) = (2,-7)BA=A−B=(5−3,2−9)=(2,−7) 內積: BA⃗⋅BC⃗=2∗2+(−7)∗2=4−14=−10\vec{BA}\cdot \vec{BC} = 2''2 + (-7)''2 = 4 -14 = -10BA⋅BC=2∗2+(−7)∗2=4−14=−10 長度: ∣BA⃗∣=22+(−7)2=4+49=53|\vec{BA}| = \sqrt{2^2 + (-7)^2} = \sqrt{4+49} = \sqrt{53}∣BA∣=22+(−7)2=4+49=53 ∣BC⃗∣=22+22=8=22|\vec{BC}| = \sqrt{2^2 +2^2} = \sqrt{8} = 2\sqrt{2}∣BC∣=22+22=8=22 cos∠CBA=−1053∗22=−102106=−5106\cos∠CBA = \frac{-10}{\sqrt{53} * 2\sqrt{2}} = \frac{-10}{2\sqrt{106}} = \frac{-5}{\sqrt{106}}cos∠CBA=53∗22−10=2106−10=106−5 * 選項寫 −6106/106=−6/106-6\sqrt{106}/106 = -6/ \sqrt{106}−6106/106=−6/106 ❌ ✅ 結論 (4) 錯誤 ==== - S=(13/3,22/3), A=(5,2), B=(3,9) ==== AS⃗=S−A=(13/3−5,22/3−2)=(13/3−15/3,22/3−6/3)=(−2/3,16/3)\vec{AS} = S-A = (13/3 -5, 22/3 -2) = (13/3 -15/3, 22/3 -6/3) = (-2/3, 16/3)AS=S−A=(13/3−5,22/3−2)=(13/3−15/3,22/3−6/3)=(−2/3,16/3) AB⃗=B−A=(3−5,9−2)=(−2,7)\vec{AB} = B-A = (3-5,9-2) = (-2,7)AB=B−A=(3−5,9−2)=(−2,7) 內積: AS⃗⋅AB⃗=(−2/3)∗(−2)+(16/3)∗7=4/3+112/3=116/3\vec{AS}\cdot \vec{AB} = (-2/3)''(-2) + (16/3)''7 = 4/3 + 112/3 = 116/3AS⋅AB=(−2/3)∗(−2)+(16/3)∗7=4/3+112/3=116/3 ✔ 與選項一致 ✅ 結論 (5) 正確 ==== | | | ==== | --- | --- | | | | | | | | | | | | | | | | 如果你願意,我可以幫你畫出 △ABC + S + Z + Z' + 直線BC,讓三角幾何和距離視覺化,一眼就能確認這些答案。 你想要我畫嗎?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)