Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68ec50da-cf00-8005-b5f6-b683506e5853
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Thanks for catching both issues. === Thanks for catching both issues. I’ve fixed the complement factor (it must be 1−∏p≡1(4), p≥29(1−2p2)\displaystyle 1-\prod_{p\equiv1(4),\,p\ge 29}(1-\tfrac{2}{p^{2}})1−p≡1(4),p≥29∏(1−p22) because x2≡−1(modp2)x^2\equiv-1\pmod{p^2}x2≡−1(modp2) has two solutions), removed the bits that broke compilation, and cleaned up a few minor glitches. ===== What I’m delivering ===== * Corrected, compile‑ready LaTeX source (no title/abstract, your case structure verbatim, all numerics moved to an appendix and rounded to 7 digits): erdos_sarkozy_casework_fixed.tex<ref>{{cite web|title=erdos_sarkozy_casework_fixed.tex|url=https://chatgpt.com/share/erdos_sarkozy_casework_fixed.tex|publisher=chatgpt.com|access-date=2025-11-25}}</ref> * I cannot run pdflatex in this environment (there’s no TeX engine available), so I can’t give you a compiled PDF directly. The file is standard LaTeX and should compile cleanly on TeX Live/MiKTeX/Overleaf. Use: ``<code>bash pdflatex -interaction=nonstopmode -halt-on-error erdos_sarkozy_casework_fixed.tex pdflatex -interaction=nonstopmode -halt-on-error erdos_sarkozy_casework_fixed.tex </code>`<code> or just upload the .tex to Overleaf. : The case structure and inequalities match your two-page sketch exactly. : : 2025-10-12 19-41 ==== What I changed (and verified) ==== # Complement tail corrected In all bounds for the “complement” block I now use Θ29(2) := 1−∏p≡1 (4)p≥29(1−2p2),\Theta_{29}^{(2)}\ :=\ 1-\prod_{\substack{p\equiv1\ (4)\\ p\ge 29}} \Bigl(1-\frac{2}{p^2}\Bigr),Θ29(2) := 1−p≡1 (4)p≥29∏(1−p22), (two solutions to x2≡−1(modp2)x^2\equiv-1\pmod{p^2}x2≡−1(modp2)). # Square‑free lemma proof fixed The lemma’s proof now splits primes into three ranges exactly as you proposed: - p>2Np>\sqrt{2N}p>2N: at most one bbb per prime ⇒o(N)\Rightarrow o(N)⇒o(N). - loglogN<p≤2N\log\log N<p\le\sqrt{2N}loglogN<p≤2N: ≪N/p2\ll N/p^2≪N/p2 per prime, sum ≪N/loglogN\ll N/\log\log N≪N/loglogN. - p≤loglogNp\le\log\log Np≤loglogN: genuine CRT/inclusion–exclusion in the progression; yields the Euler product with any forbidden primes (e.g. remove 333 if 3∣a3\mid a3∣a, remove 555 for cross pairs with A7A_7A7 or A18A_{18}A18). # Compilation fixes - Removed a footnote that had ellipses and could confuse parsers. - Removed non‑LaTeX markup. - Kept notation minimal; all macros are defined in the preamble. ==== Numbers used (the appendix prints these with 7 digits) ==== All were recomputed in Python and inserted into the .tex: * δ=∏p(1−1p2)=6π2=\delta=\prod_p(1-\tfrac{1}{p^2})=\frac{6}{\pi^2}=δ=∏p(1−p21)=π26= 0.6079271 1−δ=1-\delta=1−δ= 0.3920729 * δ5=∏p≠5(1−1p2)=254π2=\delta_5=\prod_{p\ne5}(1-\tfrac{1}{p^2})=\frac{25}{4\pi^2}=δ5=∏p=5(1−p21)=4π225= 0.6332574 1−δ5=1-\delta_5=1−δ5= 0.3667426 * δ3,5=∏p≠3,5(1−1p2)=\delta_{3,5}=\prod_{p\ne3,5}(1-\tfrac{1}{p^2})=δ3,5=∏p=3,5(1−p21)= 0.7124146 1−δ3,5=1-\delta_{3,5}=1−δ3,5= 0.2875854 * Weights: w25=225=w_{25}=\frac{2}{25}=w25=252= 0.0800000, w169=2169=w_{169}=\frac{2}{169}=w169=1692= 0.0118343, w289=2289=w_{289}=\frac{2}{289}=w289=2892= 0.0069204, wcomp=(1−225)(1−2169)(1−2289)=w_{\mathrm{comp}}=(1-\frac{2}{25})(1-\frac{2}{169})(1-\frac{2}{289})=wcomp=(1−252)(1−1692)(1−2892)= 0.9028210. * Complement tail (rigorous interval via truncation at 2⋅1062\cdot10^62⋅106 primes plus ∑n>B 1/n2\sum_{n>B}\!1/n^2∑n>B1/n2 tail bound): Θ29(2)∈[\Theta_{29}^{(2)}\in[Θ29(2)∈[0.00883767, 0.00883967] \; (midpoint 0.00883867). (All of these appear formatted in the appendix of the </code>.tex`.) ==== Case bounds (with the corrected complement) ==== The manuscript prints these in each case; here they are for convenience: '' Case 1 (A\''≠∅A^\''\neq\varnothingA\''=∅ and some a∈A\''a\in A^\''a∈A\* has 3∣a3\mid a3∣a): ∣A∣/N≤0.0378647+o(1)<1/25|A|/N \le \mathbf{0.0378647}+o(1) < 1/25∣A∣/N≤0.0378647+o(1)<1/25. '' Case 2i (A\''≠∅A^\''\neq\varnothingA\''=∅, none in A\''A^\''A\* divisible by 333, but some of A70,A99,A38,A251A_{70},A_{99},A_{38},A_{251}A70,A99,A38,A251 divisible by 333): ∣A∣/N≤0.0356799+o(1)<1/25|A|/N \le \mathbf{0.0356799}+o(1) < 1/25∣A∣/N≤0.0356799+o(1)<1/25. '' Case 2ii (A\''≠∅A^\''\neq\varnothingA\''=∅, and no 3∣3\mid3∣ any element of A\''∪A70∪A99∪A38∪A251A^\''\cup A_{70}\cup A_{99}\cup A_{38}\cup A_{251}A\*∪A70∪A99∪A38∪A251): ∣A∣/N≤0.0332288+o(1)<1/25|A|/N \le \mathbf{0.0332288}+o(1) < 1/25∣A∣/N≤0.0332288+o(1)<1/25. '' Case 3i (A\''=∅A^\''=\varnothingA\''=∅, both A38,A251A_{38},A_{251}A38,A251 nonempty): ∣A∣/N≤0.0366926+o(1)<1/25|A|/N \le \mathbf{0.0366926}+o(1) < 1/25∣A∣/N≤0.0366926+o(1)<1/25. '' Case 3ii (A\''=∅A^\''=\varnothingA\''=∅, exactly one of A38,A251A_{38},A_{251}A38,A251 nonempty): ∣A∣/N≤0.0339793+o(1)<1/25|A|/N \le \mathbf{0.0339793}+o(1) < 1/25∣A∣/N≤0.0339793+o(1)<1/25. '' Case 4a (A\''=A38=A251=∅A^\''=A_{38}=A_{251}=\varnothingA\''=A38=A251=∅, both A70,A99A_{70},A_{99}A70,A99 nonempty): ∣A∣/N≤0.0386192+o(1)<1/25|A|/N \le \mathbf{0.0386192}+o(1) < 1/25∣A∣/N≤0.0386192+o(1)<1/25. '' Case 4b (A\''=A38=A251=∅A^\''=A_{38}=A_{251}=\varnothingA\''=A38=A251=∅, exactly one of A70,A99A_{70},A_{99}A70,A99 nonempty): ∣A∣/N≤0.0339793+o(1)<1/25|A|/N \le \mathbf{0.0339793}+o(1) < 1/25∣A∣/N≤0.0339793+o(1)<1/25. * Case 5 (A⊆A7∪A18A\subseteq A_7\cup A_{18}A⊆A7∪A18): one class ⇒∣A∣≤N/25+o(N)\Rightarrow |A|\le N/25+o(N)⇒∣A∣≤N/25+o(N); both classes nonempty ⇒\Rightarrow⇒ cross pairs can’t use p=5p=5p=5, and the square‑free lemma + CRT covering forces one class to be o(N)o(N)o(N); hence the extremal configuration is exactly a single class n≡7(mod25)n\equiv 7\pmod{25}n≡7(mod25) or 18(mod25)18\pmod{25}18(mod25). If you want, I can also drop a minimal Makefile into the folder so make builds the PDF automatically.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)