Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== ### ==== For each 1≤p≤∞1\le p\le\infty1≤p≤∞ and each t>0t>0t>0, Gtf=Kt∗f,Kt(x)=(4πνt)−3/2e−∣x∣2/(4νt),G_t f = K_t * f, \qquad K_t(x) = (4\pi\nu t)^{-3/2} e^{-|x|^2/(4\nu t)},Gtf=Kt∗f,Kt(x)=(4πνt)−3/2e−∣x∣2/(4νt), and ∥Gtf∥Lp≤∥f∥Lp(in fact ∥Gt∥Lp→Lp=1).\|G_t f\|_{L^p} \le \|f\|_{L^p}\qquad(\text{in fact }\|G_t\|_{L^p\to L^p}=1).∥Gtf∥Lp≤∥f∥Lp(in fact ∥Gt∥Lp→Lp=1). Proof (sketch). The heat kernel KtK_tKt is nonnegative and has unit mass ∫Kt=1\int K_t=1∫Kt=1. By Young’s convolution inequality, ∥Gtf∥Lp=∥Kt∗f∥Lp≤∥Kt∥L1∥f∥Lp=∥f∥Lp.\|G_t f\|_{L^p} = \|K_t * f\|_{L^p} \le \|K_t\|_{L^1}\|f\|_{L^p} = \|f\|_{L^p}.∥Gtf∥Lp=∥Kt∗f∥Lp≤∥Kt∥L1∥f∥Lp=∥f∥Lp. For p=∞p=\inftyp=∞ the same follows from ∥Kt∥L1=1\|K_t\|_{L^1}=1∥Kt∥L1=1. (Strict contractivity may hold on some spaces; the important fact is boundedness with norm ≤1\le1≤1.) References. Standard: Evans, Partial Differential Equations, §2.3; Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations; also Henry, Geometric Theory of Semilinear Parabolic Equations. ===== For any s∈Rs\in\mathbb{R}s∈R and any r≥0r\ge0r≥0, ===== ∥Gtf∥Hs+r≤C t−r/2 ∥f∥Hs,t>0,\|G_t f\|_{H^{s+r}} \le C\, t^{-r/2}\,\|f\|_{H^s},\qquad t>0,∥Gtf∥Hs+r≤Ct−r/2∥f∥Hs,t>0, where C=C(ν,r)C=C(\nu,r)C=C(ν,r). Equivalently, for integer k≥0k\ge0k≥0, ∥∇kGtf∥L2≤C t−k/2 ∥f∥L2.\|\nabla^k G_t f\|_{L^2} \le C\, t^{-k/2}\,\|f\|_{L^2}.∥∇kGtf∥L2≤Ct−k/2∥f∥L2. Proof (Fourier). Using the Fourier transform Gtf^(ξ)=e−νt∣ξ∣2f^(ξ)\widehat{G_t f}(\xi)=e^{-\nu t|\xi|^2}\widehat f(\xi)Gtf(ξ)=e−νt∣ξ∣2f(ξ), ∥Gtf∥Hs+r2=∫R3(1+∣ξ∣2)s+re−2νt∣ξ∣2∣f^(ξ)∣2 dξ.\|G_t f\|_{H^{s+r}}^2 = \int_{\mathbb{R}^3} (1+|\xi|^2)^{s+r} e^{-2\nu t|\xi|^2} |\widehat f(\xi)|^2\,d\xi.∥Gtf∥Hs+r2=∫R3(1+∣ξ∣2)s+re−2νt∣ξ∣2∣f(ξ)∣2dξ. Factor (1+∣ξ∣2)re−2νt∣ξ∣2≤C t−r(1+|\xi|^2)^{r} e^{-2\nu t|\xi|^2} \le C\, t^{-r}(1+∣ξ∣2)re−2νt∣ξ∣2≤Ct−r (supremum over ξ\xiξ is O(t−r)O(t^{-r})O(t−r)). Thus the integral is ≤Ct−r∥f∥Hs2\le C t^{-r}\|f\|_{H^s}^2≤Ct−r∥f∥Hs2. Take square root to get the stated estimate. References. Standard Fourier-semigroup calculation; see Pazy (semigroup theory), Evans §2.3, and Temam, Navier–Stokes Equations. ===== GtG_tGt is a strongly continuous semigroup on LpL^pLp and on HsH^sHs: for each fff fixed, ===== limt↓0∥Gtf−f∥X=0,X=Lp or Hs.\lim_{t\downarrow 0} \|G_t f - f\|_{X} = 0,\qquad X=L^p\ \text{or}\ H^s.t↓0lim∥Gtf−f∥X=0,X=Lp or Hs. Proof (sketch). For LpL^pLp this follows from the approximation-identity property of KtK_tKt as t→0t\to0t→0. For HsH^sHs, use the Fourier representation: (1+∣ξ∣2)s/2(e−νt∣ξ∣2−1)f^(ξ)→0(1+|\xi|^2)^{s/2}(e^{-\nu t|\xi|^2}-1)\widehat f(\xi)\to0(1+∣ξ∣2)s/2(e−νt∣ξ∣2−1)f(ξ)→0 pointwise and dominated convergence given (1+∣ξ∣2)s∣f^∣2∈L1(1+|\xi|^2)^{s}|\widehat f|^2\in L^1(1+∣ξ∣2)s∣f∣2∈L1. Thus strong continuity holds. References. Pazy, Semigroups; see also functional-analytic texts and Evans. ===== For 1≤p≤q≤∞1\le p\le q\le\infty1≤p≤q≤∞, ===== ∥Gtf∥Lq≤Ct−32(1p−1q)∥f∥Lp,\|G_t f\|_{L^q} \le C t^{-\frac{3}{2}(\frac{1}{p}-\frac{1}{q})} \|f\|_{L^p},∥Gtf∥Lq≤Ct−23(p1−q1)∥f∥Lp, with the usual Gaussian scaling. This provides short-time control near t=0t=0t=0. Proof. Estimate KtK_tKt in LrL^rLr norms and apply Young inequality. Standard. References. Beckner/Young/heat kernel estimates; see Stein, Harmonic Analysis or Davies, Heat Kernels and Spectral Theory.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)