Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/695dfc16-b2ac-8005-980b-b86d96450929
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 好的,我們來仔細分析 選項 3 的問題,涉及 標準差與算術/幾何平均 的比較。 === 好的,我們來仔細分析 選項 (3) 的問題,涉及 標準差與算術/幾何平均 的比較。 ==== 選項 (3) 說: ==== : ===== - 我們有 2 個數 Rs,RmR_s, R_mRs,Rm → N=2 ===== * 算術平均 Ra=(Rs+Rm)/2R_a = (R_s + R_m)/2Ra=(Rs+Rm)/2 * 幾何平均 Rg=RsRmR_g = \sqrt{R_s R_m}Rg=RsRm * 標準差公式(對三項數列): σ=13∑(xi−xˉ)2\sigma = \sqrt{\frac{1}{3}\sum (x_i-\bar{x})^2}σ=31∑(xi−xˉ)2 選項說的是 三項數列: # Rs,Rm,RaR_s, R_m, R_aRs,Rm,Ra → 標準差 # Rs,Rm,RgR_s, R_m, R_gRs,Rm,Rg → 標準差 想知道哪個更大。 ===== 假設 Rs=1,Rm=4R_s=1, R_m=4Rs=1,Rm=4 ===== 1️⃣ 算術平均: Ra=(1+4)/2=2.5R_a = (1+4)/2=2.5Ra=(1+4)/2=2.5 * 三項數列:1,4,2.5 * 平均值 xˉ=(1+4+2.5)/3=2.5\bar{x} = (1+4+2.5)/3 = 2.5xˉ=(1+4+2.5)/3=2.5 * 標準差: σa=(1−2.5)2+(4−2.5)2+(2.5−2.5)23=2.25+2.25+03=1.5≈1.225\sigma_a = \sqrt{\frac{(1-2.5)^2 + (4-2.5)^2 + (2.5-2.5)^2}{3}} = \sqrt{\frac{2.25+2.25+0}{3}} = \sqrt{1.5} \approx 1.225σa=3(1−2.5)2+(4−2.5)2+(2.5−2.5)2=32.25+2.25+0=1.5≈1.225 2️⃣ 幾何平均: Rg=1⋅4=2R_g = \sqrt{1\cdot4}=2Rg=1⋅4=2 * 三項數列:1,4,2 * 平均值 xˉ=(1+4+2)/3=7/3≈2.333\bar{x} = (1+4+2)/3 = 7/3 \approx 2.333xˉ=(1+4+2)/3=7/3≈2.333 * 標準差: σg=(1−2.333)2+(4−2.333)2+(2−2.333)23=1.778+2.778+0.1113=4.6673=1.556≈1.247\sigma_g = \sqrt{\frac{(1-2.333)^2 + (4-2.333)^2 + (2-2.333)^2}{3}} = \sqrt{\frac{1.778 + 2.778 + 0.111}{3}} = \sqrt{\frac{4.667}{3}} = \sqrt{1.556} \approx 1.247σg=3(1−2.333)2+(4−2.333)2+(2−2.333)2=31.778+2.778+0.111=34.667=1.556≈1.247 ✅ 有趣:這個例子中,σ_a ≈ 1.225 < σ_g ≈ 1.247 : ===== - 對稱分布(等距、三項數列) - Rs,Rm,RaR_s, R_m, R_aRs,Rm,Ra → 標準差最小 - 因為 RaR_aRa 恰好落在 Rs,RmR_s, R_mRs,Rm 中間 → 等距三項數列 ===== * 而 RgR_gRg 通常 偏向較小數(對不對稱分布) * 所以當 數列只有三項且 R_s ≠ R_m,σ_a 可能 小於 σ_g ===== - 規則就更複雜了 ===== * 舉例: R1<R2<R3<R4<R5R_1<R_2<R_3<R_4<R_5R1<R2<R3<R4<R5 * 算術平均每次都落在中間 * 幾何平均偏向中小數 * 標準差大小不再有固定順序 * 取極端分布(大範圍)時,σ_a 可能大於 σ_g,也可能小於 : ===== | | | | ===== | --- | --- | --- | | | | | | | | | | | | | ===== - 選項 3 的敘述 「必然 σ_a > σ_g」 不成立 ===== * 三項數列中,算術平均可能 使標準差最小 * 五項或更多項數列,σ_a 與 σ_g 的大小完全依數列分布而定,沒有固定規則 如果你要,我可以畫一張圖: * x 軸:R_s → R_m * y 軸:σ * 標示 σ_a 與 σ_g 的大小對比 這樣 一眼就能看出三項數列和五項數列規則差異。 你想看這個圖嗎?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)