Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/696b1675-eda0-800c-80f9-612b39635436
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== 2) Which ==== 𝑥 𝑖 x i maximize Υ Υ? They are exactly the Lebesgue–optimal interpolation nodes X\''X^\''X\*, characterized by an equioscillation/equal–peak property: : The maximizer : 𝑋 : \* : = : { : 𝑥 : 1 : \* : < : ⋯ : < : 𝑥 : 𝑛 : \* : } : X : \* : ={x : 1 : \* : : : <⋯<x : n : \* : : : } is the (unique) node set for which : : 𝜆 : 0 : ( : 𝑋 : \* : ) : = : 𝜆 : 1 : ( : 𝑋 : \* : ) : = : ⋯ : = : 𝜆 : 𝑛 : ( : 𝑋 : \* : ) : , : λ : 0 : : : (X : \* : )=λ : 1 : : : (X : \* : )=⋯=λ : n : : : (X : \* : ), : : i.e. the : 𝑛 : + : 1 : n+1 “relative maxima” of : Λ : 𝑋 : \* : Λ : X : \* : : : on the : 𝑛 : + : 1 : n+1 subintervals : [ : 𝑥 : 𝑖 : \* : , : 𝑥 : 𝑖 : + : 1 : \* : ] : [x : i : \* : : : ,x : i+1 : \* : : : ] all have the same height. : DNB Portal : +1 This is precisely the Bernstein–Erdős characterization: the optimal set is unique, symmetric (about 0), and its Lebesgue function must equioscillate. DNB Portal<ref>{{cite web|title=DNB Portal|url=https://d-nb.info/1090940718/34|publisher=DNB Portal|access-date=2026-01-18}}</ref> In general the points xi\''x_i^\''xi\* do not have a simple closed form; explicit formulas are only known for very small degrees, and otherwise they are computed numerically (e.g. via a Remez-type exchange algorithm). DNB Portal<ref>{{cite web|title=DNB Portal|url=https://d-nb.info/1090940718/34|publisher=DNB Portal|access-date=2026-01-18}}</ref> ===== What do these maximizing nodes look like? ===== While not closed-form, their shape is well understood: '' They are symmetric: xn+1−k\''=−xk\''x_{n+1-k}^\''=-x_k^\''xn+1−k\''=−xk\*. DNB Portal<ref>{{cite web|title=DNB Portal|url=https://d-nb.info/1090940718/34|publisher=DNB Portal|access-date=2026-01-18}}</ref> '' They cluster toward ±1\pm1±1 with an asymptotic arcsine/Chebyshev density, i.e. heuristically xk\''≈cos ((2k−1)π2n),x_k^\''\approx \cos\!\Big(\frac{(2k-1)\pi}{2n}\Big),xk\''≈cos(2n(2k−1)π), (Chebyshev–Gauss nodes), with small nnn-dependent corrections. DNB Portal<ref>{{cite web|title=DNB Portal|url=https://d-nb.info/1090940718/34|publisher=DNB Portal|access-date=2026-01-18}}</ref> There are also explicit near-optimal “modified Chebyshev” node families in the literature that achieve the same asymptotic 2πlogn\frac{2}{\pi}\log nπ2logn growth. DNB Portal<ref>{{cite web|title=DNB Portal|url=https://d-nb.info/1090940718/34|publisher=DNB Portal|access-date=2026-01-18}}</ref>
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)