Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/692c9ea1-b3cc-800e-94da-4224ac78a36a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== 2. Rephrasing the problem in terms of powers ==== For each base did_idiβ, write S(di)={βjΞ΅i,jdij:Ξ΅i,jβ{0,1}}S(d_i) = \left\{\sum_j \varepsilon_{i,j} d_i^j : \varepsilon_{i,j}\in\{0,1\}\right\}S(diβ)={jββΞ΅i,jβdijβ:Ξ΅i,jββ{0,1}} (the integers whose base-did_idiβ expansion uses only digits 0 and 1). Your question is: : Given : 3 : β€ : π : 1 : < : β― : < : π : π : 3β€d : 1 : β : : <β―<d : k : β : : with : : β : π : = : 1 : π : 1 : π : π : β : 1 : β β : β₯ : 1 : , : i=1 : β : k : β : : d : i : β : : β1 : 1 : β : : β₯1, : : can every sufficiently large integer : π : N be written as : : π : = : β : π‘ : π : π‘ : π : π‘ : , : π : π‘ : β : { : 0 : , : 1 : } : , : N= : t : β : β : : c : t : β : : a : t : β : : ,c : t : β : : β{0,1}, : : where each : π : π‘ : β : π : ( : π : π : ) : a : t : β : : βS(d : i : β : : ) for some : π : i (i.e. each summand has only 0β1 digits in its base : π : π : d : i : β : : )? The key observation: : If we can represent every : π : N as a sum of distinct powers : π : π : π : d : i : j : β : : , then we automatically get a representation of the required form by grouping powers with the same base. Indeed, suppose we have N=βi=1kβjβ₯0Ξ΅i,jdij,Ξ΅i,jβ{0,1}.N = \sum_{i=1}^k \sum_{j\ge0} \varepsilon_{i,j} d_i^j,\qquad \varepsilon_{i,j}\in\{0,1\}.N=i=1βkβjβ₯0ββΞ΅i,jβdijβ,Ξ΅i,jββ{0,1}. For each base did_idiβ set Ai:=βjβ₯0Ξ΅i,jdij.A_i := \sum_{j\ge0} \varepsilon_{i,j} d_i^j.Aiβ:=jβ₯0ββΞ΅i,jβdijβ. Then each AiA_iAiβ has only 0/1 digits in base did_idiβ, and N=βi:Ai>0Ai.N = \sum_{i: A_i>0} A_i.N=i:Aiβ>0ββAiβ. So the original problem reduces to: : Is the sequence of all pure powers of the : π : π : d : i : β : : a complete sequence? This is exactly the setting where Brownβs criterion shines.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)