Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6905caf3-8140-8008-9ff1-39937c7b92b1
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Ⅰ-1. 「状態」を数える生成汎関数 ==== スピングラス(SK や球面 ppp-spin)で、TAP 自由エネルギー FTAP(m)F_{\rm TAP}(\mathbf m)FTAP(m) の停留点 ∂FTAP∂mi=0\frac{\partial F_{\rm TAP}}{\partial m_i}=0∂mi∂FTAP=0 を「状態(準安定解)α\alphaα」と呼び、その自由エネルギー密度を fα=FTAP(mα)/Nf_\alpha=F_{\rm TAP}(\mathbf m^\alpha)/Nfα=FTAP(mα)/N とします。複雑度(状態数の指数レート) Σ(f) ≡ limN→∞1NlnN(f),N(f)=∑αδ (f−fα)\Sigma(f) \;\equiv\; \lim_{N\to\infty}\frac{1}{N}\ln \mathcal N(f), \qquad \mathcal N(f)=\sum_\alpha \delta\!\big(f-f_\alpha\big)Σ(f)≡N→∞limN1lnN(f),N(f)=α∑δ(f−fα) を求めたい。 Monasson の「束縛レプリカ」生成関数を入れます: Zm ≡ ∑αe−βmNfα = ∫ Dm Dψ Dψˉ Dx exp [−Sm(m,ψ,ψˉ,x)].(1)Z_m \;\equiv\; \sum_\alpha e^{-\beta m N f_\alpha} \;=\; \int \! \mathcal D\mathbf m\,\mathcal D\psi\,\mathcal D\bar\psi\,\mathcal D\mathbf x\; \exp\!\Big[-S_m(\mathbf m,\psi,\bar\psi,\mathbf x)\Big]. \tag{1}Zm≡α∑e−βmNfα=∫DmDψDψˉDxexp[−Sm(m,ψ,ψˉ,x)].(1) ここで(TAP 停留点を δ\deltaδ-拘束し、Jacobian をグラスマンで表す) Sm=βm FTAP(m)+i x ⋅ ∇FTAP(m)+ψˉ⊤ (∇2FTAP(m))ψ.(2)S_m = \beta m\,F_{\rm TAP}(\mathbf m) + i\,\mathbf x\!\cdot\!\nabla F_{\rm TAP}(\mathbf m) + \bar\psi^\top \!\big(\nabla^2 F_{\rm TAP}(\mathbf m)\big)\psi. \tag{2}Sm=βmFTAP(m)+ix⋅∇FTAP(m)+ψˉ⊤(∇2FTAP(m))ψ.(2) x\mathbf xx は補助ボソン、ψ,ψˉ\psi,\bar\psiψ,ψˉ はグラスマン。これは BRST 型 SUSY を持つ(δm=ϵ ψ\delta \mathbf m=\epsilon\,\psiδm=ϵψ, δψˉ=ϵ ix\delta\bar\psi=\epsilon\, i\mathbf xδψˉ=ϵix, …)。 自由エネルギー(レプリカ拘束ポテンシャル)を ϕ(m) ≡ −1βmNlnZm(3)\phi(m) \;\equiv\; -\frac{1}{\beta m N}\ln Z_m \tag{3}ϕ(m)≡−βmN1lnZm(3) と定義すると、{f,Σ}\{f,\Sigma\}{f,Σ} はレジェンドル関係で得られる: f(m)=∂∂m[m ϕ(m)],Σ(f(m))=βm2 ∂ϕ(m)∂m.(4)\boxed{ f(m)=\frac{\partial}{\partial m}\big[m\,\phi(m)\big],\qquad \Sigma\big(f(m)\big)=\beta m^2\,\frac{\partial \phi(m)}{\partial m}. } \tag{4}f(m)=∂m∂[mϕ(m)],Σ(f(m))=βm2∂m∂ϕ(m).(4) * 熱平衡に対応する m=1m=1m=1 で SUSY が保たれていると、Ward 恒等式により Σ=0\Sigma=0Σ=0(状態数は指数的に増えない)。 * ガラス相・RSB 相では、m<1m<1m<1 の 1RSB 解が支配し、SUSY Ward が破れて ∂mϕ≠0\partial_m\phi\neq 0∂mϕ=0 が現れ、Σ>0\Sigma>0Σ>0 となる(指数的多数の状態)。
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)