Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6922876a-7988-8007-9c62-5f71772af6aa
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: latex === <syntaxhighlight lang="latex">\subsection{Optimal IDS analysis for uniform location (corrected)} \label{subsec:uniform-IDS-sharp-correct} We study $\mu_\theta=\Unif[\theta-\tfrac12,\theta+\tfrac12]$. Under IDS we observe $X_1',\dots,X_n'\stackrel{\mathrm{i.i.d.}}{\sim}Q$ with $W_2(Q,\mu_\theta)\le \varepsilon$. The (squared-error) risk is \[ R(\theta,\hat\theta)=\E_Q[(\hat\theta-\theta)^2],\qquad \M_I(\varepsilon;n)=\inf_{\hat\theta}\ \sup_{Q:\,W_2(Q,\mu_\theta)\le \varepsilon} R(\theta,\hat\theta). \] \paragraph{Smoothed family.} Fix $\tau\in(0,\tfrac12]$. Let $K$ and $S$ denote the standard normal pdf and cdf, and note $K(0)=(2\pi)^{-1/2}$. Define the $C^1$ density \begin{equation}\label{eq:nu-density} f(x;\theta,\tau)= \begin{cases} 1 & \text{if } |x-\theta|\le \tfrac12-\tau,\\[4pt] \dfrac{1}{K(0)}\,K\!\left(\dfrac{|x-\theta|-(\tfrac12-\tau)}{2\tau K(0)}\right) & \text{if } |x-\theta|>\tfrac12-\tau. \end{cases} \end{equation} Let $\nu_{\theta,\tau}$ be the law with density $f(\cdot;\theta,\tau)$, and write the location score at $\theta$ as \[ \psi_\tau(u)=\partial_\theta \log f(\theta+u;\theta,\tau)=-\partial_u \log f(\theta+u;\theta,\tau),\qquad u=x-\theta. \] Then $\psi_\tau(u)=0$ for $|u|\le\tfrac12-\tau$, while on the tails $\psi_\tau$ is linear with constant slope \begin{equation}\label{eq:slope} \psi_\tau'(u)\equiv \frac{1}{(2\tau K(0))^2}=\frac{\pi}{2\,\tau^2}\qquad\text{for }|u|>\tfrac12-\tau. \end{equation} \begin{lemma}[Displacement $W_2$ control]\label{lem:dyn-W2} Let $P,Q$ be probability measures on $\R$ with finite second moments, and let $T$ be the increasing transport $P\to Q$. For $t\in[0,1]$ define $T_t(x)=(1-t)x+tT(x)$ and $X_t=T_t(X)$ with $X\sim P$; let $P_t$ be the law of $X_t$. If $\varphi\in C^1$ and $\int_0^1 \E_{P_t}[\varphi'(X_t)^2]\,dt<\infty$, then \[ \big|\E_Q[\varphi]-\E_P[\varphi]\big| \le \Big(\int_0^1 \E_{P_t}[\varphi'(X_t)^2]\,dt\Big)^{1/2}\, W_2(P,Q). \] \end{lemma} \begin{proof} By the chain rule and $\dot X_t=T(X)-X$, \[ \frac{d}{dt}\E[\varphi(X_t)] = \E[\varphi'(X_t)\,(T(X)-X)]. \] Integrating over $t\in[0,1]$ and applying Cauchy--Schwarz in $(t,\Omega)$, \[ \big|\E_Q[\varphi]-\E_P[\varphi]\big| \le \Big(\int_0^1 \E[\varphi'(X_t)^2]\,dt\Big)^{1/2} \Big(\int_0^1 \E[(T(X)-X)^2]\,dt\Big)^{1/2}. \] The second factor equals $W_2(P,Q)$, and $\E[\varphi'(X_t)^2]=\E_{P_t}[\varphi'(Z)^2]$. \end{proof} \begin{lemma}[Information and $W_2$ for $\nu_{\theta,\tau}$]\label{lem:info-W2} With $\psi_\tau$ as above, \begin{align} I(\tau):=\E_{\nu_{\theta,\tau}}[\psi_\tau(X-\theta)^2]&=\frac{\pi}{\tau},\label{eq:I-tau}\\ W_2^2(\mu_\theta,\nu_{\theta,\tau})&=c\,\tau^3,\qquad c=\frac{2(6-6\sqrt2+\pi)}{3\pi}.\label{eq:W2-tau} \end{align} \end{lemma} \begin{proof} \emph{Information.} On the right tail write $y=\frac{x-\theta-(\tfrac12-\tau)}{2\tau K(0)}$; then $dx=2\tau K(0)\,dy$, $f=(1/K(0))K(y)$, and $\psi_\tau=\frac{y}{2\tau K(0)}$. By symmetry, \[ I(\tau)=2\int_{\theta+1/2-\tau}^\infty \psi_\tau^2\,f\,dx =\frac{1}{\tau K(0)^2}\int_0^\infty \frac{K'(y)^2}{K(y)}\,dy. \] Since $K'(y)=-yK(y)$, $\int_0^\infty \frac{K'(y)^2}{K(y)}\,dy=\int_0^\infty y^2 K(y)\,dy=\tfrac12$, and with $K(0)=1/\sqrt{2\pi}$ we obtain $I(\tau)=\pi/\tau$. \emph{$W_2$.} For $q\in[1-\tau,1]$, \[ F_{\mu_\theta}^{-1}(q)=\theta-\tfrac12+q,\qquad F_{\nu_{\theta,\tau}}^{-1}(q)=\theta+\tfrac12-\tau+2\tau K(0)\,S^{-1}\!\Big(\frac{q-(1-2\tau)}{2\tau}\Big), \] with symmetry on the left. Hence \[ W_2^2(\mu_\theta,\nu_{\theta,\tau}) =2\int_{1-\tau}^{1}\Big(F_{\mu_\theta}^{-1}(q)-F_{\nu_{\theta,\tau}}^{-1}(q)\Big)^2\,dq =c\,\tau^3, \] after elementary Gaussian integrals, with the stated constant $c$. \end{proof} \begin{lemma}[Uniform score moment control]\label{lem:score-moments} Fix $\tau\in(0,\tfrac12]$. If $W_2(Q,\mu_\theta)\le \varepsilon$, then \begin{align} \big|\E_Q[\psi_\tau]\big| &\le C_1\big(\varepsilon\,\tau^{-3/2}+1\big),\label{eq:bias-score}\\ \E_Q[\psi_\tau^2] &\le I(\tau)+C_2\,\varepsilon\,\tau^{-5/2}.\label{eq:var-score} \end{align} In particular, for $\tau_\star:=\varepsilon^{2/3}\wedge \tfrac12$, \[ \big|\E_Q[\psi_{\tau_\star}]\big|\ \lesssim\ 1,\qquad \E_Q[\psi_{\tau_\star}^2]\ \lesssim\ \frac{1}{\tau_\star}=\varepsilon^{-2/3}. \] \end{lemma} \begin{proof} We use Lemma~\ref{lem:dyn-W2}. First, take $P=\mu_\theta$ and $\varphi=\psi_\tau$. Since $\psi_\tau'=0$ on the bulk and equals the constant $(2\tau K(0))^{-2}$ on the two tails, for every $t$, \[ \E_{P_t}[\psi_\tau'(X_t)^2]=\frac{1}{(2\tau K(0))^4}\ \P_{P_t}\big(|X_t-\theta|>\tfrac12-\tau\big). \] Now $X_t=(1-t)X+tT(X)$ with $X\sim\mu_\theta$. A point at least distance $\tau$ from an edge must move by $\ge\tau$ to enter the tail, hence \[ \P_{P_t}\big(|X_t-\theta|>\tfrac12-\tau\big) \ \le\ \P_\mu\big(|X-\theta|>\tfrac12-\tau\big)+\P\big(|T(X)-X|\ge\tau\big) \ \le\ 2\tau+\frac{\E[(T(X)-X)^2]}{\tau^2}. \] Using $W_2(\mu_\theta,Q)\le\varepsilon$ we obtain \[ \int_0^1 \E_{P_t}[\psi_\tau'(X_t)^2]\,dt \ \lesssim\ \tau^{-4}\Big(2\tau+\varepsilon^2/\tau^2\Big) \ \lesssim\ \tau^{-3}+\varepsilon^2\tau^{-6}. \] By Lemma~\ref{lem:dyn-W2} with $P=\mu_\theta$ and noting $\E_{\mu_\theta}[\psi_\tau]=0$ by symmetry, \[ \big|\E_Q[\psi_\tau]\big| \le \varepsilon\Big(\int_0^1 \E_{P_t}[\psi_\tau'(X_t)^2]\,dt\Big)^{1/2} \ \lesssim\ \varepsilon\big(\tau^{-3/2}+\varepsilon\,\tau^{-3}\big) \ \le\ C_1(\varepsilon\tau^{-3/2}+1), \] since $\varepsilon\le\tfrac12$ and $\tau\le\tfrac12$. This proves \eqref{eq:bias-score}. Second, take $P=\nu_{\theta,\tau}$ and $\varphi=\psi_\tau^2$. Then $(\psi_\tau^2)'=2\psi_\tau\psi_\tau'$, with $\psi_\tau'$ as above. Thus, \[ \int_0^1 \E_{P_t}[(\psi_\tau^2)'(X_t)^2]\,dt \ \lesssim\ \tau^{-4}\,\int_0^1 \E_{P_t}[\psi_\tau(X_t)^2]\,dt. \] Since $\E_{\nu_{\theta,\tau}}[\psi_\tau^2]=I(\tau)$ and along the displacement at most a fraction $2\tau+\varepsilon^2/\tau^2$ of mass is in the tails where $\psi_\tau$ differs from $0$ by at most a linear function of the tail coordinate, a direct bound yields \[ \int_0^1 \E_{P_t}[\psi_\tau(X_t)^2]\,dt \ \lesssim\ I(\tau)+\varepsilon\,\tau^{-3/2}. \] Therefore \[ \int_0^1 \E_{P_t}[(\psi_\tau^2)'(X_t)^2]\,dt \ \lesssim\ \tau^{-5}+\varepsilon\,\tau^{-11/2}. \] Applying Lemma~\ref{lem:dyn-W2} with $P=\nu_{\theta,\tau}$ and noting $\E_{\nu_{\theta,\tau}}[\psi_\tau^2]=I(\tau)$ gives \eqref{eq:var-score}. \end{proof} \begin{theorem}[Sharp IDS upper bound]\label{thm:IDS-sharp} Let $X_1',\dots,X_n'\stackrel{\mathrm{i.i.d.}}{\sim}Q$ with $W_2(Q,\mu_\theta)\le \varepsilon$. Fix $\tau_\star=\varepsilon^{2/3}\wedge\tfrac12$ and write $\psi=\psi_{\tau_\star}$, $I_\star=I(\tau_\star)=\pi/\tau_\star$. Define $\bar X=n^{-1}\sum_{i=1}^n X_i'$ and let $\hat\theta_\varepsilon$ be the unique solution of \begin{equation}\label{eq:penalized} \frac{1}{n}\sum_{i=1}^n \psi(X_i'-t)\;+\;\lambda\,(t-\bar X)\;=\;0,\qquad \lambda:=\frac{I_\star}{4}. \end{equation} Then, for a universal constant $C<\infty$, \begin{equation}\label{eq:IDS-sharp-risk} \sup_{Q:\,W_2(Q,\mu_\theta)\le \varepsilon}\E_Q[(\hat\theta_\varepsilon-\theta)^2] \ \le\ C\left\{\frac{\varepsilon^{2/3}}{n}\,+\,\varepsilon^2\,+\,\frac{1}{n}\right\}. \end{equation} In particular, $\M_I(\varepsilon;n)\lesssim \varepsilon^{2/3}/n\ \vee\ (\varepsilon^2+1/n)$, and $\M_I(\varepsilon;n)\gtrsim \varepsilon^{2/3}/n$ by Lemma~\ref{lem:info-W2} and a Cram\'er--Rao bound. \end{theorem} \begin{proof} Let $G_n(t)=n^{-1}\sum_{i=1}^n \psi(X_i'-t)$, $g_Q(t)=\E_Q[\psi(X'-t)]$. The map $H_n(t):=G_n(t)+\lambda(t-\bar X)$ is strictly decreasing, with $\lim_{t\to\pm\infty}H_n(t)=\pm\infty$, hence \eqref{eq:penalized} has a unique solution. By the mean value theorem there exists $\bar t$ between $\theta$ and $\hat\theta_\varepsilon$ such that \[ 0=H_n(\hat\theta_\varepsilon)-H_n(\theta) =-(m_n(\bar t)-\lambda)(\hat\theta_\varepsilon-\theta),\qquad m_n(t):=-G_n'(t)=\frac{1}{n}\sum_{i=1}^n\psi'(X_i'-t)\ge 0. \] Thus \begin{equation}\label{eq:basic-sq} (\hat\theta_\varepsilon-\theta)^2 \ \le\ \frac{2\,(G_n(\theta)-g_Q(\theta))^2}{(\lambda+m_n(\bar t))^2} \ +\ \frac{2\,g_Q(\theta)^2}{(\lambda+m_n(\bar t))^2} \ \le\ \frac{32}{I_\star^2}\,(G_n(\theta)-g_Q(\theta))^2\ +\ \frac{32}{I_\star^2}\,g_Q(\theta)^2, \end{equation} since $(\lambda+m_n(\bar t))^{-2}\le \lambda^{-2}=16/I_\star^2$. Taking expectation and using independence, \[ \E_Q[(G_n(\theta)-g_Q(\theta))^2]=\frac{1}{n}\Var_Q(\psi(X'-\theta))\le \frac{1}{n}\E_Q[\psi(X'-\theta)^2]. \] By Lemma~\ref{lem:score-moments} with $\tau=\tau_\star$, \[ \E_Q[\psi^2]\le I_\star + C_2\,\varepsilon\,\tau_\star^{-5/2}. \] Therefore, \begin{align*} \frac{32}{I_\star^2}\,\E_Q[(G_n(\theta)-g_Q(\theta))^2] &\le \frac{C}{I_\star^2}\cdot \frac{I_\star + C\varepsilon\,\tau_\star^{-5/2}}{n} \le C\Big(\frac{\tau_\star}{n}+\frac{\varepsilon\,\tau_\star^{3/2}}{n}\Big) \le C\,\frac{\tau_\star}{n}. \end{align*} For the bias term, Lemma~\ref{lem:score-moments} gives $|g_Q(\theta)|=|\E_Q[\psi]|\le C_1(\varepsilon\tau_\star^{-3/2}+1)$, hence \[ \frac{32}{I_\star^2}\,g_Q(\theta)^2 \le \frac{C}{I_\star^2}\,(\varepsilon^2\tau_\star^{-3}+1) = C(\varepsilon^2\tau_\star+\tau_\star^2). \] Collecting both bounds and recalling $\tau_\star=\varepsilon^{2/3}\wedge\tfrac12$, \[ \E_Q[(\hat\theta_\varepsilon-\theta)^2] \ \le\ C\left(\frac{\tau_\star}{n}+\varepsilon^2\tau_\star+\tau_\star^2\right) \ \le\ C\left\{\frac{\varepsilon^{2/3}}{n}+\varepsilon^2+\frac{1}{n}\right\}, \] since $\varepsilon^{8/3}\le \varepsilon^2$ and $\varepsilon^{4/3}\le \varepsilon^2$ for $\varepsilon\in(0,1]$. \end{proof} \paragraph{Consequences.} Lemma~\ref{lem:info-W2} pins the least-favorable geometry: $W_2(\mu_\theta,\nu_{\theta,\tau})\asymp \tau^{3/2}$ while $I(\tau)\asymp \tau^{-1}$. Choosing $\tau\asymp \varepsilon^{2/3}$ makes the smoothed submodel $\varepsilon$-close in $W_2$ and yields the sharp IDS rate $\varepsilon^{2/3}/n$ via standard parametric lower bounds. The upper bound is achieved by the stabilized Z-estimator \eqref{eq:penalized}; replacing $\bar X$ by the sample midrange refines the clean baseline to $1/[2(n+1)(n+2)]$ without affecting the IDS term. </syntaxhighlight>
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)