Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6905caf3-8140-8008-9ff1-39937c7b92b1
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== - SUSY 保持(Ward 恒等式が成り立つ) - 路積分:δ\deltaδ による部分積分で境界項 0 → (5)。 - 2 点:GϕF=GψˉψG_{\phi F}=G_{\bar\psi\psi}GϕF=Gψˉψ, GFF=0G_{FF}=0GFF=0 など (6)(10)。 - 1PI:ΓϕF=Γψˉψ\Gamma_{\phi F}=\Gamma_{\bar\psi\psi}ΓϕF=Γψˉψ, ΓFF=0\Gamma_{FF}=0ΓFF=0 など (9)。 - 帰結:線図対消と次元還元(d→d−2d\to d-2d→d−2)。 === * SUSY 破れ(Ward 恒等式が破綻) - 路積分:測度/境界の寄与 A≠0\mathcal A\neq 0A=0 → (12)。 - 2 点:違反項 Δ1,2\Delta_{1,2}Δ1,2 により (13)。 - 1PI:Zinn–Justin 恒等式に Σ\SigmaΣ → (14)(15)(16)。 - 帰結:退化の破れ・応答—揺らぎの破れ・次元還元の破綻。 必要なら、上の A\mathcal AA、Σ\SigmaΣ を具体的な境界ヤコビアン(たとえば Nicolai 写像の臨界点集合の寄与)として、トイモデルで明示計算するメモ(有限次元の確率積分でのSUSY 破れアノマリー→連続系への持ち上げ)も用意できます。どこを数式でさらに埋めますか?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)