Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68b970ce-1e04-8005-85da-9f2468b66517
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 정답: −6\boxed{-6}−6 === 정답: −6\boxed{-6}−6 설명은 핵심만 정리하겠습니다. # 관계식과 도함수 f(x)=g(x)−tang(x)⟹f′(x)=g′(x)−sec2 g(x) g′(x)=−g′(x)tan2 g(x).(1)f(x)=g(x)-\tan g(x)\quad\Longrightarrow\quad f'(x)=g'(x)-\sec^{2}\!g(x)\,g'(x)=-g'(x)\tan^{2}\!g(x). \tag{1}f(x)=g(x)−tang(x)⟹f′(x)=g′(x)−sec2g(x)g′(x)=−g′(x)tan2g(x).(1) # x=0x=0x=0에서 조건 f(0)=0f(0)=0f(0)=0이므로 g(0)−tang(0)=0⇒tang(0)=g(0)g(0)-\tan g(0)=0\Rightarrow \tan g(0)=g(0)g(0)−tang(0)=0⇒tang(0)=g(0). (1)을 x=0x=0x=0에 대입하면 f′(0)=−g′(0)tan2g(0)=−g′(0) g(0)2⟹g′(0) g(0)2=− f′(0).(2)f'(0)=-g'(0)\tan^{2}g(0)=-g'(0)\,g(0)^{2} \quad\Longrightarrow\quad g'(0)\,g(0)^{2}=-\,f'(0). \tag{2}f′(0)=−g′(0)tan2g(0)=−g′(0)g(0)2⟹g′(0)g(0)2=−f′(0).(2) 따라서 물음값은 −f′(0)-f'(0)−f′(0)만 구하면 됩니다. # x=πx=\pix=π에서의 조건으로 fff의 계수 결정 fff는 삼차다항식이므로 f(x)=ax3+bx2+cx+df(x)=ax^{3}+bx^{2}+cx+df(x)=ax3+bx2+cx+d. (가) f′′(π)=0⇒6aπ+2b=0⇒b=−3aπf''(\pi)=0\Rightarrow 6a\pi+2b=0\Rightarrow b=-3a\pif′′(π)=0⇒6aπ+2b=0⇒b=−3aπ. (나) sing(π)=0⇒g(π)=nπ (n∈Z)\sin g(\pi)=0\Rightarrow g(\pi)=n\pi\ (n\in\mathbb{Z})sing(π)=0⇒g(π)=nπ (n∈Z). 이때 tang(π)=0\tan g(\pi)=0tang(π)=0이므로 f(π)=g(π)−tang(π)=nπ.f(\pi)=g(\pi)-\tan g(\pi)=n\pi.f(π)=g(π)−tang(π)=nπ. 또한 (1)로부터 f′(π)=−g′(π)tan2g(π)=0f'(\pi)=-g'(\pi)\tan^{2}g(\pi)=0f′(π)=−g′(π)tan2g(π)=0이므로 f′(π)=3aπ2+2bπ+c=0⇒c=3aπ2.f'(\pi)=3a\pi^{2}+2b\pi+c=0\Rightarrow c=3a\pi^{2}.f′(π)=3aπ2+2bπ+c=0⇒c=3aπ2. 따라서 f(π)=aπ3+bπ2+cπ=aπ3−3aπ3+3aπ3=aπ3=nπ⇒a=nπ2.f(\pi)=a\pi^{3}+b\pi^{2}+c\pi =a\pi^{3}-3a\pi^{3}+3a\pi^{3}=a\pi^{3}=n\pi \Rightarrow a=\frac{n}{\pi^{2}}.f(π)=aπ3+bπ2+cπ=aπ3−3aπ3+3aπ3=aπ3=nπ⇒a=π2n. # limx→∞g(x)=3π2\displaystyle\lim_{x\to\infty}g(x)=\frac{3\pi}{2}x→∞limg(x)=23π로부터 nnn 결정 함수 h(u)=u−tanuh(u)=u-\tan uh(u)=u−tanu는 각 구간 (π2+kπ, 3π2+kπ)(\frac{\pi}{2}+k\pi,\ \frac{3\pi}{2}+k\pi)(2π+kπ, 23π+kπ)에서 단조감소로 R\mathbb{R}R에 대한 전단사입니다. limx→∞g(x)=3π2\lim_{x\to\infty}g(x)=\frac{3\pi}{2}limx→∞g(x)=23π이 성립하려면 xxx가 커질수록 g(x)g(x)g(x)가 구간 (3π2, 5π2)(\frac{3\pi}{2},\ \frac{5\pi}{2})(23π, 25π) 쪽에서 3π2\frac{3\pi}{2}23π로 접근해야 하고, 이때 f(x)=g(x)−tang(x)f(x)=g(x)-\tan g(x)f(x)=g(x)−tang(x)는 x→∞x\to\inftyx→∞에서 +∞+\infty+∞로 가야 합니다. 따라서 fff의 최고차계수 a>0a>0a>0, 곧 n>0n>0n>0. 또 x=πx=\pix=π에서 g(π)=nπg(\pi)=n\pig(π)=nπ가 위 구간 (3π2, 5π2)(\frac{3\pi}{2},\ \frac{5\pi}{2})(23π, 25π) 안에 있어야 하므로 가능한 정수는 n=2n=2n=2뿐입니다. 결론적으로 a=2π2a=\dfrac{2}{\pi^{2}}a=π22, c=3aπ2=6c=3a\pi^{2}=6c=3aπ2=6. # 마무리 f′(0)=c=6f'(0)=c=6f′(0)=c=6. (2)에 의해 g′(0) g(0)2=−f′(0)=−6.g'(0)\,g(0)^{2}=-f'(0)=-6.g′(0)g(0)2=−f′(0)=−6. 보기와 일치: −6\boxed{-6}−6 (선지 2).
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)