Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/67b71e2c-cc10-8008-9939-dfe494d1384d
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== #### ===== The capacitance of a sphere is given by: C=4ΟΟ΅0rC = 4 \pi \epsilon_0 rC=4ΟΟ΅0βr where: * Ο΅0=8.854Γ10β12\epsilon_0 = 8.854 \times 10^{-12}Ο΅0β=8.854Γ10β12 F/m (vacuum permittivity), * r=40r = 40r=40 microns = 40Γ10β640 \times 10^{-6}40Γ10β6 m. C=4Ο(8.854Γ10β12)(40Γ10β6)C = 4 \pi (8.854 \times 10^{-12}) (40 \times 10^{-6})C=4Ο(8.854Γ10β12)(40Γ10β6) Cβ4.45Γ10β15Β FC \approx 4.45 \times 10^{-15} \text{ F}Cβ4.45Γ10β15Β F ====== Charge is calculated as: ====== Q=CVQ = C VQ=CV where V=β100VV = -100VV=β100V: Q=(4.45Γ10β15)Γ(β100)Q = (4.45 \times 10^{-15}) \times (-100)Q=(4.45Γ10β15)Γ(β100) Qββ4.45Γ10β13Β CQ \approx -4.45 \times 10^{-13} \text{ C}Qββ4.45Γ10β13Β C ====== The electrostatic force between two particles separated by distance ddd is given by Coulombβs law: ====== F=14ΟΟ΅0Q2d2F = \frac{1}{4\pi\epsilon_0} \frac{Q^2}{d^2}F=4ΟΟ΅0β1βd2Q2β Substituting: * Q=β4.45Γ10β13Q = -4.45 \times 10^{-13}Q=β4.45Γ10β13 C, * d=55d = 55d=55 microns = 55Γ10β655 \times 10^{-6}55Γ10β6 m, F=(9Γ109)(55Γ10β6)2Γ(4.45Γ10β13)2F = \frac{(9 \times 10^9)}{(55 \times 10^{-6})^2} \times (4.45 \times 10^{-13})^2F=(55Γ10β6)2(9Γ109)βΓ(4.45Γ10β13)2 F=(9Γ109)Γ(1.98Γ10β253.025Γ10β9)F = (9 \times 10^9) \times \left(\frac{1.98 \times 10^{-25}}{3.025 \times 10^{-9}}\right)F=(9Γ109)Γ(3.025Γ10β91.98Γ10β25β) Fβ5.88Γ10β7Β NF \approx 5.88 \times 10^{-7} \text{ N}Fβ5.88Γ10β7Β N ====== The gravitational force acting on the particle is: ====== Fg=mg=43Οr3ΟgF_g = mg = \frac{4}{3} \pi r^3 \rho gFgβ=mg=34βΟr3Οg where: * Ο=3000\rho = 3000Ο=3000 kg/mΒ³ (density of lunar regolith), * g=1.62g = 1.62g=1.62 m/sΒ² (lunar gravity). Fg=43Ο(40Γ10β6)3(3000)(1.62)F_g = \frac{4}{3} \pi (40 \times 10^{-6})^3 (3000) (1.62)Fgβ=34βΟ(40Γ10β6)3(3000)(1.62) Fgβ1.30Γ10β9Β NF_g \approx 1.30 \times 10^{-9} \text{ N}Fgββ1.30Γ10β9Β N
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)