Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Good — this is exactly the right point to question. === Good — this is exactly the right point to question. Let me account for the Leray projector PPP explicitly and rigorously, without hand-waving. ==== On R3\mathbb{R}^3R3 (or T3\mathbb{T}^3T3), the Leray projector is defined by ==== P:=I−∇Δ−1div.P := I - \nabla \Delta^{-1}\operatorname{div}.P:=I−∇Δ−1div. Equivalently, in Fourier variables, (Pf)^i(ξ)=(δij−ξiξj∣ξ∣2)f^j(ξ).\widehat{(P f)}_i(\xi) = \left(\delta_{ij} - \frac{\xi_i\xi_j}{|\xi|^2}\right)\hat f_j(\xi).(Pf)i(ξ)=(δij−∣ξ∣2ξiξj)f^j(ξ). This is a matrix-valued Fourier multiplier of order 0. ==== ### ==== For every s∈Rs\in\mathbb{R}s∈R, P:Hs(R3;R3)→Hs(R3;R3)is bounded.P : H^s(\mathbb{R}^3;\mathbb{R}^3)\to H^s(\mathbb{R}^3;\mathbb{R}^3) \quad\text{is bounded.}P:Hs(R3;R3)→Hs(R3;R3)is bounded. That is, ∥Pf∥Hs≤Cs∥f∥Hs.\|P f\|_{H^s} \le C_s \|f\|_{H^s}.∥Pf∥Hs≤Cs∥f∥Hs. ===== - The symbol mij(ξ)=δij−ξiξj∣ξ∣2m_{ij}(\xi)=\delta_{ij}-\frac{\xi_i\xi_j}{|\xi|^2}mij(ξ)=δij−∣ξ∣2ξiξj is: - smooth away from ξ=0\xi=0ξ=0, - homogeneous of degree 0, - uniformly bounded with all derivatives. ===== * Such symbols define bounded operators on all HsH^sHs (this is a standard Fourier multiplier theorem). No regularity is lost or gained by PPP. ==== The Navier–Stokes nonlinearity in mild form is ==== F(s)=−P ∇⋅(u⊗u)(s).F(s) = -P\,\nabla\cdot (u\otimes u)(s).F(s)=−P∇⋅(u⊗u)(s). Let us track regularity step by step. ===== Assume ===== u(s)∈Hs,s>32.u(s)\in H^s,\qquad s>\tfrac32.u(s)∈Hs,s>23. Then: * HsH^sHs is a Banach algebra, * hence u⊗u∈Hs,∥u⊗u∥Hs≲∥u∥Hs2.u\otimes u \in H^s, \qquad \|u\otimes u\|_{H^s} \lesssim \|u\|_{H^s}^2.u⊗u∈Hs,∥u⊗u∥Hs≲∥u∥Hs2. ===== ∇⋅(u⊗u)∈Hs−1.\nabla\cdot (u\otimes u)\in H^{s-1}.∇⋅(u⊗u)∈Hs−1. ===== ===== Using boundedness of PPP: ===== P∇⋅(u⊗u)∈Hs−1,P\nabla\cdot (u\otimes u)\in H^{s-1},P∇⋅(u⊗u)∈Hs−1, with ∥P∇⋅(u⊗u)∥Hs−1 ≤ C∥∇⋅(u⊗u)∥Hs−1.\|P\nabla\cdot (u\otimes u)\|_{H^{s-1}} \;\le\; C\|\nabla\cdot (u\otimes u)\|_{H^{s-1}}.∥P∇⋅(u⊗u)∥Hs−1≤C∥∇⋅(u⊗u)∥Hs−1. So PPP does not change the Sobolev index. ==== This is trivial but worth stating cleanly: ==== If s>32s>\tfrac32s>23, then s−1>12>0s-1>\tfrac12>0s−1>21>0, and by definition Hs−1⊂L2with continuous embedding.H^{s-1}\subset L^2 \quad\text{with continuous embedding.}Hs−1⊂L2with continuous embedding. Thus: F(s)=−P∇⋅(u⊗u)(s)∈L2.F(s)= -P\nabla\cdot(u\otimes u)(s)\in L^2.F(s)=−P∇⋅(u⊗u)(s)∈L2. ==== Since: ==== * u∈C([0,T];Hs)u\in C([0,T];H^s)u∈C([0,T];Hs), * the map u↦P∇⋅(u⊗u)u\mapsto P\nabla\cdot(u\otimes u)u↦P∇⋅(u⊗u) is continuous Hs→Hs−1H^s\to H^{s-1}Hs→Hs−1, we obtain: F∈C([0,T];Hs−1) ⊂ L1(0,T;L2).F\in C([0,T];H^{s-1}) \;\subset\; L^1(0,T;L^2).F∈C([0,T];Hs−1)⊂L1(0,T;L2). This is the precise justification needed for the Duhamel term. ==== : ==== Nothing is hidden here — PPP is completely harmless at this level. ==== - Temam, Navier–Stokes Equations, Ch. I–II ==== * Constantin & Foias, Navier–Stokes Equations, §2 * Taylor, Pseudodifferential Operators, multiplier theory * Grafakos, Classical Fourier Analysis, Fourier multipliers If you want, next I can: * show the boundedness of PPP on HsH^sHs without Fourier transform, using singular integrals, * or explain how PPP interacts with the heat semigroup etΔe^{t\Delta}etΔ, * or track the same argument in Besov spaces (critical case). Just tell me which.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)