Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69596681-3f7c-8006-b9fd-01d9d8191763
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below are clean, compile-ready tables numeric only intended to be ingested into a single composite graph in the next re… === Below are clean, compile-ready tables (numeric only) intended to be ingested into a single composite graph in the next response. They are mutually aligned on the same x-axis (p) and require no interpretation layer. All values are exact, deterministic, and closed-form. ==== Column: p ==== Domain: 0 … 999 <syntaxhighlight>p 0 1 2 3 4 5 … 995 996 997 998 999 </syntaxhighlight> (Use as the shared x-axis for all subsequent tables.) ==== Column: r_max ==== Definition: rmax(p)=0.9∀pr_{\max}(p) = 0.9 \quad \forall prmax(p)=0.9∀p <syntaxhighlight>r_max 0.9 0.9 0.9 0.9 0.9 0.9 … 0.9 0.9 0.9 0.9 0.9 </syntaxhighlight> Purpose in composite graph: constant horizontal line. ==== Column: tau_naive ==== Definition: τnaive(p)=3.0⋅2−p\tau_{\text{naive}}(p)=3.0\cdot 2^{-p}τnaive(p)=3.0⋅2−p First values: <syntaxhighlight>p tau_naive 0 3.000000000000000 1 1.500000000000000 2 0.750000000000000 3 0.375000000000000 4 0.187500000000000 5 0.093750000000000 </syntaxhighlight> Asymptotic tail: <syntaxhighlight>p tau_naive 10 0.002929687500000 20 0.000002861022949 50 2.664535259100e-15 100 2.367159491070e-30 999 ~0.0 (underflow) </syntaxhighlight> Purpose: descending curve crossing <code>r_max</code> at p = 2. ==== Column: tau_ir ==== Definition: τIR(p)=0.9+(3.0−0.9)⋅2−p\tau_{\text{IR}}(p)=0.9+(3.0-0.9)\cdot 2^{-p}τIR(p)=0.9+(3.0−0.9)⋅2−p First values: <syntaxhighlight>p tau_ir 0 3.000000000000000 1 1.950000000000000 2 1.425000000000000 3 1.162500000000000 4 1.031250000000000 5 0.965625000000000 </syntaxhighlight> Asymptotic tail: <syntaxhighlight>p tau_ir 10 0.902050781250000 20 0.900002861022949 50 0.900000000000003 100 0.900000000000000 999 0.900000000000000 </syntaxhighlight> Purpose: monotone curve saturating from above to <code>r_max</code>. ==== Column: tau_min ==== Definition: τmin(p)=0.9+0.1⋅2−p\tau_{\min}(p)=0.9+0.1\cdot 2^{-p}τmin(p)=0.9+0.1⋅2−p First values: <syntaxhighlight>p tau_min 0 1.000000000000000 1 0.950000000000000 2 0.925000000000000 3 0.912500000000000 4 0.906250000000000 5 0.903125000000000 </syntaxhighlight> Asymptotic tail: <syntaxhighlight>p tau_min 10 0.900097656250000 20 0.900000095367432 50 0.900000000000000 999 0.900000000000000 </syntaxhighlight> Purpose: tight envelope demonstrating necessity. ==== Column: tau_fail ==== Definition: τfail(p)=0.9−0.05⋅2−p\tau_{\text{fail}}(p)=0.9-0.05\cdot 2^{-p}τfail(p)=0.9−0.05⋅2−p First values: <syntaxhighlight>p tau_fail 0 0.850000000000000 1 0.875000000000000 2 0.887500000000000 3 0.893750000000000 4 0.896875000000000 5 0.898437500000000 </syntaxhighlight> Asymptotic tail: <syntaxhighlight>p tau_fail 10 0.899951171875000 20 0.899999904632568 50 0.900000000000000 (approach from below) </syntaxhighlight> Purpose: curve strictly below <code>r_max</code> → collapse region. ==== Column: collapse_naive ==== Definition: collapse_naive(p)=1[ 0.9>τnaive(p) ]\text{collapse\_naive}(p)=\mathbf{1}[\,0.9>\tau_{\text{naive}}(p)\,]collapse_naive(p)=1[0.9>τnaive(p)] <syntaxhighlight>p collapse_naive 0 0 1 0 2 1 3 1 4 1 … 999 1 </syntaxhighlight> Purpose: step-function overlay marking collapse onset. ==== All tables share the same p index. ==== A single composite graph should include: * X-axis: p * Y-axis: tolerance / residual magnitude * Curves: - tau_naive - tau_ir - tau_min - tau_fail * Horizontal line: - r_max * Optional binary shading: - collapse_naive No further transformation is required. When you say “next”, I will: * assemble these into a single composite plot specification (exact axes, legends, layering), or * emit plot-ready code (NumPy → Matplotlib / LaTeX PGFPlots) with no ambiguity. © Robert R. Frost 2026-01-03
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)