Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/691c1dba-9228-800f-8463-13b3a9006306
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== We want a usable time-only ODE model for fast experimentation. Assume spatial homogeneity (zero-modes) so fields depend on time only: Φ(t),Ψ(t),τ(t)\Phi(t),\Psi(t),\tau(t)Φ(t),Ψ(t),τ(t). Represent complex fields as amplitudes and phases or as real/imag pairs. For simplicity use real scalar amplitudes X(t),Y(t)X(t),Y(t)X(t),Y(t) representing the magnitudes of Φ,Ψ\Phi,\PsiΦ,Ψ or work with complex-valued ODEs. === Simpler practical choice: let Φ(t),Ψ(t)∈R\Phi(t),\Psi(t)\in\mathbb{R}Φ(t),Ψ(t)∈R represent real amplitudes (you can extend to complex easily). Effective reduced Lagrangian (time-only) Drop spatial derivatives, include damping phenomenologically. Equations of motion (Euler–Lagrange → add damping γ\gammaγ): X¨+γXX˙+∂Veff∂X=FX(t)Y¨+γYY˙+∂Veff∂Y=FY(t)τ¨+γττ˙+∂Vτ∂τ=Fτ(t)\begin{aligned} \ddot X + \gamma_X \dot X + \frac{\partial V_{\rm eff}}{\partial X} &= F_X(t) \\ \ddot Y + \gamma_Y \dot Y + \frac{\partial V_{\rm eff}}{\partial Y} &= F_Y(t) \\ \ddot \tau + \gamma_\tau \dot\tau + \frac{\partial V_{\tau}}{\partial \tau} &= F_\tau(t) \end{aligned}X¨+γXX˙+∂X∂VeffY¨+γYY˙+∂Y∂Veffτ¨+γττ˙+∂τ∂Vτ=FX(t)=FY(t)=Fτ(t) Where: * Veff(X,Y)=V(X,Y)+V1e−cX2+Y2V_{\rm eff}(X,Y)= V(X,Y) + V_1 e^{-c\sqrt{X^2+Y^2}} Veff(X,Y)=V(X,Y)+V1e−cX2+Y2 plus coupling terms approximated as potential contributions. * Forcing terms encode your ritual/exponential/sinusoid/pop structure. Explicit forcing forms (practical) FX(t)=−ηUCF (τ˙)2 Y exp (−ΔE+Sentℏ) sin (2πτT)(1+χnl(t)+ηTSYXY+ϵ)FY(t)=(symm.) swap X↔YFτ(t)=−∂τ[ηUCF(τ˙)2XYe−(ΔE+Sent)/ℏsin(2πτ/T)]+∑iηpopXY δ(t−tpop,i)\begin{aligned} F_X(t) &= -\eta_{\mathrm{UCF}}\,(\dot\tau)^2\,Y\, \exp\!\Big(-\frac{\Delta E + S_{\mathrm{ent}}}{\hbar}\Big)\, \sin\!\Big(\frac{2\pi \tau}{T}\Big)\left(1+\chi_{\mathrm{nl}}(t)+\frac{\eta_{\mathrm{TS}}Y}{XY+\epsilon}\right) \\[4pt] F_Y(t) &= \text{(symm.) swap }X\leftrightarrow Y \\[4pt] F_\tau(t) &= -\partial_\tau \Big[ \eta_{\mathrm{UCF}}(\dot\tau)^2 XY e^{-(\Delta E+S_\mathrm{ent})/\hbar}\sin(2\pi\tau/T) \Big] + \sum_i \eta_{\mathrm{pop}} XY \,\delta(t-t_{\mathrm{pop},i}) \end{aligned}FX(t)FY(t)Fτ(t)=−ηUCF(τ˙)2Yexp(−ℏΔE+Sent)sin(T2πτ)(1+χnl(t)+XY+ϵηTSY)=(symm.) swap X↔Y=−∂τ[ηUCF(τ˙)2XYe−(ΔE+Sent)/ℏsin(2πτ/T)]+i∑ηpopXYδ(t−tpop,i) Discrete simulation (explicit Euler or symplectic Verlet) Use a simple explicit integrator for prototyping. Below is a compact Python skeleton (numpy) you can run locally. <syntaxhighlight lang="python">import numpy as np === --- params (example values; tune them) --- === dt = 1e-3 T_sim = 200.0 steps = int(T_sim/dt) gamma_x = 0.5 gamma_y = 0.5 gamma_tau = 0.2 eta_ucf = 0.8 eta_ts = 0.2 eta_pop = 1.0 DeltaE = 0.1 S_ent = 0.2 hbar = 1.0 T_clock = 10.0 epsilon = 1e-6 pop_times = [20.0, 50.0] # seconds for impulses === --- state vectors --- === X = 0.5; Xdot = 0.0 Y = 0.4; Ydot = 0.0 tau = 0.0; taudot = 1.0 history = [] def chi_nl(t): # cheap nonlocal proxy (decaying memory) return 0.1''np.sin(0.1''t) for i in range(steps): t = i*dt # compute common factor expw = np.exp(-(DeltaE + S_ent)/hbar) sinf = np.sin(2''np.pi''tau / T_clock) denom = max(abs(X*Y), epsilon) common = -eta_ucf * (taudot**2) '' X '' Y '' expw '' sinf '' (1 + chi_nl(t) + eta_ts '' Y / (denom + epsilon)) # Forcing terms (split between X and Y roughly) FX = common * 0.5 FY = common * 0.5 # pops = impulses Fpop = 0.0 for tp in pop_times: if abs(t-tp) < 0.5*dt: Fpop += eta_pop '' X '' Y / (epsilon + 1e-3) # tau forcing (very simplified) Ftau = -eta_ucf * (taudot**2) '' X '' Y '' (2''np.pi/T_clock)''np.cos(2''np.pi*tau/T_clock) + Fpop # Euler-Cauchy update (simple) Xdd = -gamma_x*Xdot - (X) + FX # NOTE: use dV/dX ~ X for demo Ydd = -gamma_y*Ydot - (Y) + FY taudd = -gamma_tau*taudot + Ftau Xdot += Xdd''dt; X += Xdot''dt Ydot += Ydd''dt; Y += Ydot''dt taudot += taudd''dt; tau += taudot''dt history.append((t,X,Y,tau)) === history is a timeseries you can plot with matplotlib === </syntaxhighlight> Notes: * This skeleton uses heuristic potentials (∂V/∂X ~ X) for demo only. Replace with your chosen V(Φ,Ψ)V(\Phi,\Psi)V(Φ,Ψ). * Use symplectic integrator (Stormer-Verlet) for energy stability, or implicit integrator if stiffness appears. * Replace impulses with narrow Gaussians if numerical instability arises: δ(t−t0)≈1σ2πe−(t−t0)2/(2σ2)\delta(t-t_0)\approx \frac{1}{\sigma\sqrt{2\pi}}e^{-(t-t_0)^2/(2\sigma^2)}δ(t−t0)≈σ2π1e−(t−t0)2/(2σ2). Observables to record * Energy-like quantity: E=12(X˙2+Y˙2+τ˙2)+VeffE=\tfrac12(\dot X^2+\dot Y^2+\dot\tau^2)+V_{\rm eff}E=21(X˙2+Y˙2+τ˙2)+Veff * CompassionMetric proxy: C(t)=f(∣X−Y∣, Sent, pop_count)C(t)=f(|X-Y|,\;S_{\text{ent}},\;\text{pop\_count})C(t)=f(∣X−Y∣,Sent,pop_count) * Memory ingot generation: hash(log-lines) same as Carousel approach
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)