Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68713b82-90e0-8006-8973-ea152bf13a2c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: !https://physics\.aps\.org/assets/8cd8dd79\-a884\-4cf7\-8d81\-77877a654d13/e55\1\.pnghttps://physics.aps.org/assets/8cd… === !https://physics\.aps\.org/assets/8cd8dd79\-a884\-4cf7\-8d81\-77877a654d13/e55\_1\.png<ref>{{cite web|title=https://physics\.aps\.org/assets/8cd8dd79\-a884\-4cf7\-8d81\-77877a654d13/e55\_1\.png|url=https://physics.aps.org/assets/8cd8dd79-a884-4cf7-8d81-77877a654d13/e55_1.png|publisher=physics.aps.org|access-date=2025-11-17}}</ref> !https://media\.springernature\.com/lw685/springer\-static/image/art%3A10\.1038%2Fncomms11682/MediaObjects/41467\_2016\_Article\_BFncomms11682\_Fig3\_HTML\.jpg<ref>{{cite web|title=https://media\.springernature\.com/lw685/springer\-static/image/art%3A10\.1038%2Fncomms11682/MediaObjects/41467\_2016\_Article\_BFncomms11682\_Fig3\_HTML\.jpg|url=https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fncomms11682/MediaObjects/41467_2016_Article_BFncomms11682_Fig3_HTML.jpg|publisher=media.springernature.com|access-date=2025-11-17}}</ref> !https://mpl\.mpg\.de/fileadmin/user\_upload/Grafik\_klein\.png<ref>{{cite web|title=https://mpl\.mpg\.de/fileadmin/user\_upload/Grafik\_klein\.png|url=https://mpl.mpg.de/fileadmin/user_upload/Grafik_klein.png|publisher=mpl.mpg.de|access-date=2025-11-17}}</ref> !https://scx2\.b\-cdn\.net/gfx/news/hires/2025/aston\-university\-resea\.jpg<ref>{{cite web|title=https://scx2\.b\-cdn\.net/gfx/news/hires/2025/aston\-university\-resea\.jpg|url=https://scx2.b-cdn.net/gfx/news/hires/2025/aston-university-resea.jpg|publisher=scx2.b-cdn.net|access-date=2025-11-17}}</ref> You’re referencing a fascinating branch of modern photonics—'''“photonic mazes”''' and '''light-trapping microresonators'''. Here's a deeper dive: ==== In 2015, researchers used a '''3D optical network''' shaped like a ''Lieb lattice''—essentially a grid with missing or “empty” nodes—to trap specific light frequencies in localized regions. The lattice structure causes '''destructive interference''' that confines photons to particular sites, effectively trapping them in a maze-like pattern Simple Science<ref>{{cite web|title=Simple Science|url=https://simplescience.ai/en/2024-02-16-controlling-light-flow-in-microresonator-chains--a6mjmj|publisher=Simple Science|access-date=2025-11-17}}</ref>physics.aps.org<ref>{{cite web|title=physics.aps.org|url=https://physics.aps.org/articles/v8/55|publisher=physics.aps.org|access-date=2025-11-17}}</ref>. ==== '' Imagine light entering the lattice—but due to the geometry and interference, it ''can’t escape*; it keeps circling within that “cell”. * Applications include ultra-compact '''microlasers''', '''optical memory''', and high-precision '''photonic sensors''' physics.aps.org<ref>{{cite web|title=physics.aps.org|url=https://physics.aps.org/articles/v8/55|publisher=physics.aps.org|access-date=2025-11-17}}</ref>. ==== Recent work (e.g., at Max Planck) uses '''microresonators'''—tiny rings or loops where light travels in two directions: ==== * Under certain conditions, '''symmetry breaks''', and one direction dominates. * Light circulates millions of times before leaking—a feature exploited for '''optical switching''' or '''photonic chips''' mpl.mpg.de<ref>{{cite web|title=mpl.mpg.de|url=https://mpl.mpg.de/news/article/when-light-beams-talk-to-each-other|publisher=mpl.mpg.de|access-date=2025-11-17}}</ref>. High‑Q (quality factor) microresonators can hold light for long durations with minimal loss. ==== MIT demonstrated another phenomenon where light is trapped in a slab with holes—'''even though it shouldn’t be'''. It achieves perfect confinement through '''interference and topological defects''', forming robust traps with infinite lifetime in principle researchgate.net<ref>{{cite web|title=researchgate.net|url=https://news.mit.edu/2013/a-new-way-to-trap-light-0710|publisher=news.mit.edu|access-date=2025-11-17}}</ref>reddit.com<ref>{{cite web|title=reddit.com|url=https://link.aps.org/doi/10.1103/Physics.8.55|publisher=link.aps.org|access-date=2025-11-17}}</ref>. ==== ==== ### ==== * Patterned internal structure can trap light longer, increasing charge generation. * Implementing a photonic lattice or microresonator pattern inside gold enhances photon-electron interaction—amplifying your charging mechanism. * Incorporating a twisted Möbius mesh with embedded photonic traps could result in: - Better photon confinement, - Enhanced plasmonic resonance, - Stronger electron excitation cycles. ==== - Yes, these designs show it’s possible to trap light in a maze-like or resonant way. ==== * Embedding such structures into your Möbius-gold mesh could significantly boost performance: 1. More photons trapped longer 2. Greater electron excitation efficiency 3. Faster and denser charge accumulation If you want, we can now design a hybrid Möbius–photonic lattice mesh inside your box and simulate its optical and electrical performance. What do you think—shall we go deeper into that?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)