Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69174844-9774-8012-8b69-32262ca5e35a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 好的,我们来仔细解释“参考动量的四个元”是什么意思,这涉及到四维动量的概念。 === 好的,我们来仔细解释“参考动量的四个元”是什么意思,这涉及到四维动量的概念。 ==== 在相对论里,动量不是单纯的三维矢量 p\mathbf{p}p,而是四维矢量: ==== pμ=(p0,p1,p2,p3)p^\mu = (p^0, p^1, p^2, p^3)pμ=(p0,p1,p2,p3) * 分量解释: | | | | | --- | --- | --- | | | | | | | | | 所以“四个元”就是指这四个分量:(E,px,py,pz)(E, p_x, p_y, p_z)(E,px,py,pz)。 ==== - 参考动量 prefμp_\text{ref}^\muprefμ 是用来定义小群的标准动量向量。 ==== * 它是四维矢量,因此有四个分量,也就是所谓“四个元”。 例子: # 有质量粒子静止系: prefμ=(m,0,0,0)p_\text{ref}^\mu = (m, 0, 0, 0)prefμ=(m,0,0,0) * 四个元: - p0=mp^0 = mp0=m (能量) - p1=p2=p3=0p^1 = p^2 = p^3 = 0p1=p2=p3=0 (空间动量为零) # 无质量粒子沿 z 方向: prefμ=(E,0,0,E)p_\text{ref}^\mu = (E, 0, 0, E)prefμ=(E,0,0,E) * 四个元: - p0=Ep^0 = Ep0=E (能量) - p1=0,p2=0,p3=Ep^1 = 0, p^2 = 0, p^3 = Ep1=0,p2=0,p3=E (沿 z 的动量) ==== - 小群定义:保持参考动量不变的所有洛伦兹变换 ==== Λμνprefν=prefμ\Lambda^\mu{}_\nu p_\text{ref}^\nu = p_\text{ref}^\muΛμνprefν=prefμ * “保持不变”就是 四个元都保持不变: (Λp)0=p0,(Λp)1=p1,(Λp)2=p2,(Λp)3=p3(\Lambda p)_0 = p_0, \quad (\Lambda p)_1 = p_1, \quad (\Lambda p)_2 = p_2, \quad (\Lambda p)_3 = p_3(Λp)0=p0,(Λp)1=p1,(Λp)2=p2,(Λp)3=p3 * 这个条件决定了小群结构: - 有质量 → 三维旋转 (SO(3)) - 无质量 → ISO(2) ==== 1. 四个元 = 四维动量的四个分量 = (能量, 三维动量) ==== # 参考动量是分析小群的标准四维动量向量 # 小群的定义就是保持这四个元不变的洛伦兹变换 : 如果你愿意,我可以画一张 四维动量图 + 小群示意图,把静止粒子和光子的参考动量、对应小群及自由度可视化出来,一眼理解四个元、参考动量、小群和自旋的关系。 你希望我画吗?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)