Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Hypotheses. Let u(x,t)u(x,t)u(x,t) be a sufficiently smooth solution on [0,T]×R3[0,T]\times\mathbb{R}^3[0,T]×R3 (for example u∈C1([0,T];L2)∩C([0,T];H2)u\in C^1([0,T];L^2)\cap C([0,T];H^2)u∈C1([0,T];L2)∩C([0,T];H2); decays at infinity fast enough or use periodic/compact domain so boundary terms vanish). Let viscosity ν>0\nu>0ν>0. Assume ∇⋅u=0\nabla\cdot u=0∇⋅u=0. ==== Claim (energy equality). 12ddt∥u(t)∥L22+ν∥∇u(t)∥L22=0.\frac{1}{2}\frac{d}{dt}\|u(t)\|_{L^2}^2 + \nu\|\nabla u(t)\|_{L^2}^2 = 0.21dtd∥u(t)∥L22+ν∥∇u(t)∥L22=0. Proof. Multiply the PDE by uuu and integrate over space: # Start from the momentum equation ∂tu−νΔu+(u⋅∇)u+∇p=0.\partial_t u - \nu\Delta u + (u\cdot\nabla)u + \nabla p = 0.∂tu−νΔu+(u⋅∇)u+∇p=0. # Take the L2L^2L2-inner product with uuu (i.e. integrate componentwise: ∫(⋯ )⋅u dx\int (\cdots)\cdot u\,dx∫(⋯)⋅udx). Each term: * Time-derivative term: ∫(∂tu)⋅u dx=12ddt∫∣u∣2 dx=12ddt∥u∥L22,\int (\partial_t u)\cdot u\,dx = \tfrac12\frac{d}{dt}\int |u|^2\,dx = \tfrac12\frac{d}{dt}\|u\|_{L^2}^2,∫(∂tu)⋅udx=21dtd∫∣u∣2dx=21dtd∥u∥L22, because the map t↦∥u(t)∥L22t\mapsto \|u(t)\|^2_{L^2}t↦∥u(t)∥L22 is differentiable when u∈C1([0,T];L2)u\in C^1([0,T];L^2)u∈C1([0,T];L2) and the derivative equals 2⟨∂tu,u⟩2\langle \partial_t u,u\rangle2⟨∂tu,u⟩. * Viscous term (integration by parts; boundary terms vanish by decay or periodicity): −ν∫(Δu)⋅u dx=ν∫∣∇u∣2 dx=ν∥∇u∥L22.-\nu\int (\Delta u)\cdot u\,dx = \nu\int |\nabla u|^2\,dx = \nu\|\nabla u\|_{L^2}^2.−ν∫(Δu)⋅udx=ν∫∣∇u∣2dx=ν∥∇u∥L22. (Use ∫(Δu)⋅u=−∫∇u:∇u\int (\Delta u)\cdot u = -\int \nabla u : \nabla u∫(Δu)⋅u=−∫∇u:∇u.) * Pressure term: ∫(∇p)⋅u dx=−∫p (∇⋅u) dx=0,\int (\nabla p)\cdot u\,dx = -\int p\,(\nabla\cdot u)\,dx = 0,∫(∇p)⋅udx=−∫p(∇⋅u)dx=0, because ∇⋅u=0\nabla\cdot u=0∇⋅u=0. * Nonlinear convection term: ∫(u⋅∇)u⋅u dx=∑i∑j∫uj∂jui ui dx=12∑j∫uj∂j(∣u∣2) dx=−12∑j∫(∂juj) ∣u∣2 dx=0,\int (u\cdot\nabla)u\cdot u\,dx = \sum_i\sum_j \int u_j \partial_j u_i \, u_i\,dx = \frac12\sum_j\int u_j \partial_j (|u|^2)\,dx = -\frac12\sum_j\int (\partial_j u_j)\,|u|^2\,dx = 0,∫(u⋅∇)u⋅udx=i∑j∑∫uj∂juiuidx=21j∑∫uj∂j(∣u∣2)dx=−21j∑∫(∂juj)∣u∣2dx=0, again because ∇⋅u=0\nabla\cdot u=0∇⋅u=0 (or integrate by parts, boundary terms vanish). # Summing terms yields exactly 12ddt∥u∥L22+ν∥∇u∥L22=0.\frac12\frac{d}{dt}\|u\|_{L^2}^2 + \nu\|\nabla u\|_{L^2}^2 = 0.21dtd∥u∥L22+ν∥∇u∥L22=0. This is rigorous whenever the above integrals and integrations by parts are justified — i.e. uuu is smooth enough and decays or the domain has suitable boundary conditions.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)