Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/674467e2-4648-800d-8ea7-f9a78979c12c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Key Concepts in Mathematical Form ===== # Neutral Centers as Focal Points FNC=∑i=1nϕi⋅ψiF_{NC} = \sum_{i=1}^n \phi_i \cdot \psi_iFNC=i=1∑nϕi⋅ψi - FNCF_{NC}FNC: Force or energy converging at the neutral center. - ϕi,ψi\phi_i, \psi_iϕi,ψi: Vibrational potentials from interacting masses iii, in harmonic resonance. # Levitation via Cycloid Motion Cycloid motion is modeled as: x(t)=r(t−sin(t)),y(t)=r(1−cos(t))x(t) = r(t - \sin(t)), \quad y(t) = r(1 - \cos(t))x(t)=r(t−sin(t)),y(t)=r(1−cos(t)) - x(t),y(t)x(t), y(t)x(t),y(t): Position of a point on the cycloid path. - rrr: Radius of the generating circle. - This motion minimizes resistance and enhances energy transfer, aligning with Schauberger's levitative forces. # Gravity and Gravitism Keely’s gravity as a sympathetic stream: G=∫V∇⋅E dVG = \int_{V} \nabla \cdot \mathbf{E} \, dVG=∫V∇⋅EdV - GGG: Gravitational force as the flux divergence of the etheric field E\mathbf{E}E through a volume VVV. Russell’s view of gravity as centripetal compression: G(r)=kr2⋅exp(−αr)G(r) = \frac{k}{r^2} \cdot \exp(-\alpha r)G(r)=r2k⋅exp(−αr) - G(r)G(r)G(r): Gravitational potential, modified by the exponential decay exp(−αr)\exp(-\alpha r)exp(−αr) to account for vibrational attenuation. - kkk: Gravitational constant. - α\alphaα: Vibratory damping factor. # Levitation and Magnetolytic Dissociation Schauberger’s levitation through magnetism: Flev=q⋅(v×B)F_{lev} = q \cdot (\mathbf{v} \times \mathbf{B})Flev=q⋅(v×B) - FlevF_{lev}Flev: Levitational force. - qqq: Charge of ions involved in levitative processes. - v\mathbf{v}v: Velocity of the ions. - B\mathbf{B}B: Magnetic field intensity. Magnetolytic dissociation intensifies levitation: ΔFlev=Flev⋅(1+Δvv)\Delta F_{lev} = F_{lev} \cdot \left(1 + \frac{\Delta v}{v}\right)ΔFlev=Flev⋅(1+vΔv) - ΔFlev\Delta F_{lev}ΔFlev: Enhanced levitation force. - Δv\Delta vΔv: Incremental velocity from rotational acceleration. # Energy Liberation in Molecular Aggregation Keely’s latent energy liberation: Elatent=∑i=1nki⋅ωi2E_{latent} = \sum_{i=1}^n k_i \cdot \omega_i^2Elatent=i=1∑nki⋅ωi2 - ElatentE_{latent}Elatent: Latent energy stored in molecular aggregation. - kik_iki: Spring constant or vibratory stiffness of the iii-th bond. - ωi\omega_iωi: Angular velocity of rotational molecular vibrations. # Sympathetic Vibratory Forces Sympathetic vibration as a resonance phenomenon: ω=km\omega = \sqrt{\frac{k}{m}}ω=mk - ω\omegaω: Natural resonant frequency. - kkk: Restoring vibratory force constant. - mmm: Effective mass. Energy transfer through sympathetic induction: Eind=A⋅sin(ωt+ϕ)E_{ind} = A \cdot \sin(\omega t + \phi)Eind=A⋅sin(ωt+ϕ) - EindE_{ind}Eind: Induced energy. - AAA: Amplitude of excitation. - ϕ\phiϕ: Phase offset for harmonic alignment. # Implosion vs. Explosion Dynamics Schauberger’s implosion dynamics: Pimpl=12ρv2−kTP_{impl} = \frac{1}{2} \rho v^2 - \frac{k}{T}Pimpl=21ρv2−Tk - PimplP_{impl}Pimpl: Implosive pressure. - ρ\rhoρ: Density of the medium. - vvv: Velocity of inward flow. - TTT: Temperature. - kkk: Proportional constant. Explosion dynamics (destructive forces): Pexpl=ρv2+kTP_{expl} = \rho v^2 + \frac{k}{T}Pexpl=ρv2+Tk # Gravitational and Levitative Forces as Dualities Expressing Russell’s dualities: Fgrav+Flev=0F_{grav} + F_{lev} = 0Fgrav+Flev=0 Where: Fgrav=−∇⋅Egrav,Flev=∇⋅ElevF_{grav} = -\nabla \cdot \mathbf{E}_{grav}, \quad F_{lev} = \nabla \cdot \mathbf{E}_{lev}Fgrav=−∇⋅Egrav,Flev=∇⋅Elev - FgravF_{grav}Fgrav: Gravitational force as centripetal. - FlevF_{lev}Flev: Levitational force as centrifugal. # Efficiency of Implosion-Based Machines Schauberger’s efficiency formula: η=1−RresistRform\eta = 1 - \frac{R_{resist}}{R_{form}}η=1−RformRresist - η\etaη: Efficiency. - RresistR_{resist}Rresist: Resistance to natural motion. - RformR_{form}Rform: Formative energy contribution. # Vibrational Energy Density Keely’s vibrational energy density: U=12k⋅x2U = \frac{1}{2} k \cdot x^2U=21k⋅x2 - UUU: Energy density. - xxx: Displacement of the system in vibratory motion.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)