Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69701d2e-3e28-8008-adb9-9b22325d1902
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== gpt-5 == === User: å®ã¯ç§ã¯ã·ããŒã®å®çãçè§£ã§ããªãã®ã§ããã©ãã解説ãé¡ãããããã§ããè³æã¯ãã®æ¬ãã5æãããŸãã === å®ã¯ç§ã¯ã·ããŒã®å®çãçè§£ã§ããªãã®ã§ããã©ãã解説ãé¡ãããããã§ããè³æã¯ãã®æ¬ãã5æãããŸãã === Assistant: å圱ããããšãããããŸãã衚çŽã¯å ç°è¯ä¹ã代æ°å ¥é â矀ãšå 矀âãã§ããããŸãã«ã·ããŒïŒSylowïŒã®å®çãç»å Žããå žåçãªå ¥éæžã§ãããŸãè³æã®5æãèŠããŠããã ããã°ããã®æ¬ã«å³ããŠèª¬æãã§ããŸããããã®åã«äžè¬çãªçè§£ã®éçããŸãšã⊠=== å圱ããããšãããããŸãã衚çŽã¯å ç°è¯ä¹ã代æ°å ¥é â矀ãšå 矀âãã§ããããŸãã«ã·ããŒïŒSylowïŒã®å®çãç»å Žããå žåçãªå ¥éæžã§ãããŸãè³æã®5æãèŠããŠããã ããã°ããã®æ¬ã«å³ããŠèª¬æãã§ããŸããããã®åã«äžè¬çãªçè§£ã®éçããŸãšããŸãã ==== æéçŸ€ã®æ§é ãè§£ãæããäžã§ã®åŒ·åãªéå ·ã§ããç¹ã«ã矀ã®äœæ°ïŒèŠçŽ ã®åæ°ïŒã«çŸããçŽ æ°ã¹ãéšåããå¿ ãå«ãéšå矀ãååšããããšãä¿èšŒããŸãã ==== ===== 矀 GGG ã®äœæ°ã ===== â£Gâ£=pnâ m(pâ€m)|G| = p^n \cdot m \quad (p \nmid m)â£Gâ£=pnâ m(pâ€m) ãšåè§£ã§ãããšãïŒã€ãŸã ppp 㯠|G| ã®çŽ å æ°ã§ãæå€§ã¹ãã pnp^npnïŒã # pnp^npn 次ã®éšå矀ïŒãããã·ã㌠ppp-éšå矀ãšããïŒãå¿ ãååšããã # ä»»æã®2ã€ã®ã·ã㌠ppp-éšå矀ã¯å ±åœ¹ã§ããïŒçŸ€ã®äžã§ãåã圢ããšã¿ãªããïŒã # ã·ã㌠ppp-éšå矀ã®åæ°ã npn_pnpâ ãšãããšã - npâ¡1(modp)n_p \equiv 1 \pmod{p}npââ¡1(modp) - npâ£mn_p \mid mnpââ£m ãæãç«ã€ã ==== - 矀ã¯å šäœãšããŠã¯è€éã§ããäœæ°ã«åºãŠããçŽ æ°ã¹ãã®ããããŸãããå¿ ãèŠã€ããã ==== * ããããããã®ãããŸãã¯ãäžçš®é¡ããããªãã矀ã®å éšã§ãäœçœ®ãéãã ããã * ãã®æ§è³ªããæé矀ã现ããåé¡ãã倧ããªå©ãã«ãªãã ==== äŸãã°çŸ€ S3S_3S3âïŒ3æåã®å¯Ÿç§°çŸ€ãäœæ°6ïŒã ==== â£S3â£=6=2â 3|S_3| = 6 = 2 \cdot 3â£S3ââ£=6=2â 3ã * p=3p=3p=3 ã®å ŽåïŒ 313^131 ã®éšå矀ã¯ååšããã¯ããå®éã3ãµã€ã¯ã« (123)(123)(123) ãçæããå·¡å矀 âš(123)â©\langle (123) \rangleâš(123)â© ãããã * p=2p=2p=2 ã®å ŽåïŒ 212^121 ã®éšå矀ãååšããã¯ããå®éã眮æ (12)(12)(12) ãªã©ãçæãã矀 âš(12)â©\langle (12) \rangleâš(12)â© ãããã ãããŠã·ããŒã®å®çã«ãã£ãŠãããããã®çŽ æ°ã«å¯Ÿå¿ããéšå矀ããå¿ ãããäžå®ã®åæ°ãã§çŸããããšãä¿èšŒãããŸãã ==== - ååšä¿èšŒã ãã§ãªããåæ°ãå¶éããããããšã匷åã äŸãã° np=1n_p = 1npâ=1 ãªãããã®ã·ããŒéšå矀ã¯çŸ€å šäœã§æ£èŠéšå矀ã«ãªããçŸ€ã®æ§é ã倧ããçžããŸãã ==== * 矀è«ã®å€§ããªå®çïŒæéåçŽçŸ€ã®åé¡ãªã©ïŒã«ãšã£ãŠæ¬ ãããªãææ®µã ==== 1. ã©ã°ã©ã³ãžã¥ã®å®çïŒéšå矀ã®äœæ°ã¯çŸ€ã®äœæ°ãå²ãåãïŒããã£ããæãåºãã ==== # ã³ãŒã·ãŒã®å®çïŒçŸ€ã®äœæ°ãå²ãçŽ æ° ppp ã«å¯ŸããŠãäœæ° ppp ã®èŠçŽ ãå¿ ãããïŒãè¶³ãããã«ããã â ã·ããŒã®å®çã¯ã³ãŒã·ãŒã®å®çã®å€§å¹ ãªäžè¬åã # å®éã®çŸ€ïŒå¯Ÿç§°çŸ€ãè¡å矀ãªã©ïŒã§ãã·ããŒéšå矀ããæ¢ããŠã¿ããæœè±¡ã ãã§ãªãå ·äœãå©ãã«ãªãã ããªããããããéã£ãŠãã ãã5æã®è³æã«å³ããŠããã®èšŒæã®æµãããå ç°å çã®èª¬æã®æå³ãæŽçããŠãããŸãããã æºåãã§ãããæåã®ããŒãžãèŠããŠããã ããŸããïŒ === User: 1æç®ã§ãã === 1æç®ã§ãã === Assistant: ããããšãããããŸããç»åãæèŠããŸãããå ç°å çã®æ¬ã§ã¯ §15 ã·ããŒã®å®ç ãå§ãŸãæåã®ããŒãžã§ããããŸãã¯ãŠã©ãŒãã³ã°ã¢ãããšããŠãè£é¡ 15.1ããåºãŠããŠããŸããããã¯çŽæ¥ã·ããŒã®å®çã蚌æããããã«å¿ èŠãªæ°è«çéå ·ã§ãã === ããããšãããããŸããç»åãæèŠããŸãããå ç°å çã®æ¬ã§ã¯ §15 ã·ããŒã®å®ç ãå§ãŸãæåã®ããŒãžã§ããããŸãã¯ãŠã©ãŒãã³ã°ã¢ãããšããŠãè£é¡ 15.1ããåºãŠããŠããŸããããã¯çŽæ¥ã·ããŒã®å®çã蚌æããããã«å¿ èŠãªæ°è«çéå ·ã§ãã ==== - §15 ã·ããŒã®å®çã®å°å ¥éšåã - æé矀è«ã«ãããã·ããŒã®å®çã®äœçœ®ã¥ããæžãããŠããã - ãã»ãšãã©å¯äžã®æ§é å®çããšåŒã¹ãã»ã©åŒ·åã§ãå¿çšãåºããšèª¬æãããŠããŸãã ==== * è£é¡15.1 ppp ãçŽ æ°ãšãããšããäºé ä¿æ°ã«ã€ããŠæ¬¡ã®åååŒãæç«ããïŒ (pq)â¡q(modp).\binom{p}{q} \equiv q \pmod{p}.(qpâ)â¡q(modp). * ãã®èšŒæã®ãã³ãïŒ æéäœ Fp=Z/pZF_p = \mathbb{Z}/p\mathbb{Z}Fpâ=Z/pZ äžã§ã®äºé å±éãèããã®ãç°¡åã ããšæžãããŠããŸãã ==== ããã¯ã·ããŒã®å®çãã®ãã®ã§ã¯ãããŸããããæéäœã®æ§è³ªãå©çšãããååç®è¡ãã®åºç€éå ·ã«ãªããŸãã ==== å ·äœçã«èšããšïŒ * äºé å®ç (1+x)p=âq=0p(pq)xq.(1+x)^p = \sum_{q=0}^p \binom{p}{q} x^q.(1+x)p=q=0âpâ(qpâ)xq. * ãããæéäœ FpF_pFpâ ã§èãããšããã§ã«ããŒã®å°å®çã«ãã (1+x)pâ¡1+xp(modp).(1+x)^p \equiv 1 + x^p \pmod{p}.(1+x)pâ¡1+xp(modp). * ãã£ãŠä¿æ°æ¯èŒãã (pq)â¡0(1â€qâ€pâ1)\binom{p}{q} \equiv 0 \quad (1 \leq q \leq p-1)(qpâ)â¡0(1â€qâ€pâ1) ãåŸãããã®ã§ã¯âŠïŒãšæããããããŸãããããã®ããŒãžã®åŒã¯ (pq)â¡q(modp)\binom{p}{q} \equiv q \pmod{p}(qpâ)â¡q(modp) ãšãªã£ãŠããŸãã ããã¯ãè£é¡ã®å ·äœçãªåœ¢ã誀èªããŠããªãããæ³šæãå¿ èŠã§ãããåçã®åŒãèªãéã確ãã«ããæžãããŠããããã§ããããããæ¬¡ã®åœ¢ãæå³ããŠãããšæãããŸãïŒ (pr)â¡0(modp),(0<r<p)\binom{p}{r} \equiv 0 \pmod{p}, \quad (0<r<p)(rpâ)â¡0(modp),(0<r<p) ã (pqp)â¡q(modp).\binom{p^q}{p} \equiv q \pmod{p}.(ppqâ)â¡q(modp). ç¹ã«2ã€ç®ã®åŒ (pqp)â¡q(modp)\binom{p^q}{p} \equiv q \pmod{p}(ppqâ)â¡q(modp) ã¯ã·ããŒã®å®çã®èšŒæã«çŽæ¥åºãŠããæåãªè£é¡ã§ãïŒã·ããŒéšå矀ã®åæ°ã«é¢ããæŽé€æ§ã瀺ããšãã«äœ¿ããŸãïŒã ==== - ã·ããŒã®å®çã®èšŒæã§ã¯ã矀ã®éšå矀ã®åæ°ããæ°ããããã«ãçµã¿åããè«ãäºé ä¿æ°ãç»å ŽããŸãã ==== * ãã®è£é¡ã¯ããã®èšç®ããmod pãã§æŽããããã«å¿ èŠãªéå ·ã§ãã æ¬¡ã«ãæ®ãã®4æãèŠãã°å ç°å çã®æ¬ã«æ²¿ã£ã蚌æã®éçã远ããŸãã ã·ããŒã®å®çã®ãååšããå ±åœ¹æ§ããåæ°æ¡ä»¶ãã®ãã¡ããŸãã¯ åæ°æ¡ä»¶ npâ¡1(modp)n_p \equiv 1 \pmod{p}npââ¡1(modp) ã®èšŒæã«ãã®è£é¡ã䜿ãããã¯ãã§ãã å·®ãæ¯ããªããã°ã2æç®ã®ããŒãžãèŠããŠããã ããŸããïŒ === User: 2æç®ã§ãã === 2æç®ã§ãã === Assistant: ããããšãããããŸãã2æç®ã§ã¯è£é¡ 15.1 ã®èšŒæãçµããããããã ã·ããŒã®å®çã®æ¬æ ãå§ãŸã£ãŠããŸãããå å®¹ãæŽçããŠã¿ãŸãã === ããããšãããããŸãã2æç®ã§ã¯è£é¡ 15.1 ã®èšŒæãçµããããããã ã·ããŒã®å®çã®æ¬æ ãå§ãŸã£ãŠããŸãããå å®¹ãæŽçããŠã¿ãŸãã ==== 2æç®ã®äžååã§å°ãããŠããåŒã¯ïŒ ==== (pqp)â¡q(modp).\binom{p^q}{p} \equiv q \pmod{p}.(ppqâ)â¡q(modp). ãããã·ããŒã®å®çã§ãã·ããŒéšå矀ã®åæ°ãã«ã€ããŠã®æŽé€æ¡ä»¶ã瀺ããšãã«åœ¹ç«ã¡ãŸããã€ãŸãããéšåçŸ€ãæ°ãããš ppp ã§å²ãåãããã1äœãããšããçµè«ã«ã€ãªããæºåã§ãã ==== - äœæ°ãçŽ æ° ppp ã®ã¹ãã«ãªã£ãŠããæé矀ããppp-矀ããšããã ==== * äžè¬ã®æé矀 GGG ã«å¯ŸããŠãäœæ° â£Gâ£=pnq|G| = p^n qâ£Gâ£=pnq ïŒãã ã pâ€qp \nmid qpâ€qïŒãšå æ°åè§£ã§ãããšããäœæ° pnp^npn ã®éšå矀ã ã·ã㌠ppp-éšå矀 ãšããã * ã·ã㌠ppp-éšå矀㯠GGG ã®äžã§ãæå€§ã® ppp-éšå矀ãã ==== æ¬æã«4ã€ã®äž»åŒµã䞊ãã§ããŸãïŒ ==== # æé矀 GGG ã¯ãä»»æã®çŽ æ° ppp ã«å¯ŸããŠã·ã㌠ppp-éšå矀ããã€ã ïŒååšã®ä¿èšŒïŒ # GGG ã® ppp-éšå矀ã¯ãã¹ãŠã·ã㌠ppp-éšå矀ã«å«ãŸããã ïŒæå€§æ§ïŒ # ã·ã㌠ppp-éšå矀ã¯äºãã«å ±åœ¹ã§ããã ïŒãäœçœ®ãéãã ããã§æ¬è³ªçã«ã¯åãïŒ # ã·ã㌠ppp-éšå矀ã®åæ°ã npn_pnpâ ãšãããšã npâ¡1(modp),npâ£qn_p \equiv 1 \pmod{p}, \quad n_p \mid qnpââ¡1(modp),npââ£q ãæãç«ã€ã ïŒåæ°ã®å¶éæ¡ä»¶ïŒ ==== äžã®æ¹ã«ã蚌æããšããŠæžãããŠããã®ã¯ããŸã (1) ã®ãååšã®ä¿èšŒãéšåã§ãã ==== * 矀ã®äœæ°ã â£Gâ£=pnq|G| = p^n qâ£Gâ£=pnq ãšçœ®ãã * pnp^npn ã矀ã®äœæ°ããããããå²ãæå€§ã®ã¹ãããšããŠå®çŸ©ãããã * X={SâGâ£â£Sâ£=pn}X = \{ S \subseteq G \mid |S| = p^n \}X={SâGâ£â£Sâ£=pn} ããpnp^npn å ããã€éšåéåã®å šäœããšããã ããã§ã矀 GGG ããã®éå XXX ã«å·Šç§»å gS={gsâ£sâS}gS = \{gs \mid s \in S\}gS={gsâ£sâS} ã§äœçšããŸãã â ãã®äœçšãå©çšããŠãã·ããŒéšå矀ãå¿ ãååšãããããšã瀺ããŠãããŸãã ==== ãã®ææ³ã¯ã矀ã®äœçšãšè»éåè§£ãã®èãæ¹ã䜿ã£ãŠããŸãã ==== ãéšåéåã«å¯Ÿãã矀ã®äœçšãâãè»éã®å€§ãããâãçŽ æ° ppp ã§ã®å²ãç®ããšç¹ããŠããã®ãå®ç³ã§ãã ããã§è£é¡ 15.1 ã®äºé ä¿æ°ååã䜿ãããŸãã æ¬¡ã®ããŒãžã§ã¯ããã®ãäœçšã®è»éåè§£ãããã·ããŒéšå矀ã®ååšãåæ°æ¡ä»¶ãåŒãåºãã¹ããããå±éãããã¯ãã§ãã å·®ãæ¯ããªããã°ã3æç®ãèŠããŠããã ããŸããïŒ === User: 3æç®ã§ãã === 3æç®ã§ãã === Assistant: ããããšãããããŸãã3æç®ã§ãããããã·ããŒã®å®çã®ãååšããšãæå€§æ§ãã®èšŒæã®æ žå¿ã«å ¥ã£ãŠããŸããå å®¹ãæŽçããŸãã === ããããšãããããŸãã3æç®ã§ãããããã·ããŒã®å®çã®ãååšããšãæå€§æ§ãã®èšŒæã®æ žå¿ã«å ¥ã£ãŠããŸããå å®¹ãæŽçããŸãã ==== 1. éšåéå XXX ã®å€§ãããæ°ãã - X={SâGâ£â£Sâ£=pn}X = \{ S \subseteq G \mid |S| = p^n \}X={SâGâ£â£Sâ£=pn}ã - ãã®å€§ããã¯äºé ä¿æ°ã§è¡šããã â£Xâ£=(pnqpn).|X| = \binom{p^n q}{p^n}.â£Xâ£=(pnpnqâ). - è£é¡ 15.1 ã䜿ã£ãŠ â£Xâ£â¡q(modp)|X| \equiv q \pmod{p}â£Xâ£â¡q(modp) ãåããã - pâ€qp \nmid qpâ€q ãªã®ã§ãâ£Xâ£|X|â£X⣠㯠ppp ã®åæ°ã§ãªãããããã£ãŠ XXX ã®å ã¯å¿ ãååšããã â ããµã€ãº pnp^npn ã®éšåéåã確ãã«ååšãããããšãä¿èšŒããã ==== # 矀äœçšã§è»éã«åãã - GGG 㯠XXX ã«èªç¶ã«äœçšããïŒå·Šç§»åïŒã - ãããã£ãŠ â£Xâ£|X|â£X⣠ã¯è»éå解㧠â£Xâ£=âiâ£OG(Si)â£|X| = \sum_i |O_G(S_i)|â£Xâ£=iâââ£OGâ(Siâ)⣠ãšè¡šããã - è£é¡ã«ãããš â£Xâ£â¢0(modp)|X| \not\equiv 0 \pmod{p}â£Xâ£î â¡0(modp) ãªã®ã§ãå°ãªããšã1ã€ã®è»é OG(S0)O_G(S_0)OGâ(S0â) ã ppp ã§å²ãåããªã倧ããããã€ã # å®å®å矀ãèãã - ãã®éšåéå S0S_0S0â ã®å®å®å矀 H=ZG(S0)H = Z_G(S_0)H=ZGâ(S0â) ãèããã - è»éã»å®å®å矀ã®å ¬åŒãã â£OG(S0)â£=(G:H)=â£Gâ£â£Hâ£.|O_G(S_0)| = (G : H) = \frac{|G|}{|H|}.â£OGâ(S0â)â£=(G:H)=â£Hâ£â£Gâ£â. - â£OG(S0)â£|O_G(S_0)|â£OGâ(S0â)⣠ã ppp ã§å²ããªã â ãããã£ãŠ â£Hâ£|H|â£H⣠㯠pnp^npn ãå²ãåãã â ããã«ãããäœæ° pnp^npn ã®éšå矀 HHH ãååšããã ããã ã·ã㌠ppp-éšå矀ã®ååš ã®èšŒæã ==== - 次㫠(2)ãä»»æã® ppp-éšå矀ã¯ã·ã㌠ppp-éšå矀ã«å«ãŸãããã瀺ãããã«ãç¹å®ã®ã·ããŒéšå矀 SSS ãåºå®ãããã®å ±åœ¹éšå矀 gSgâ1gSg^{-1}gSgâ1 ãèããŠããŸãã ==== * ããã§ã¯ãæ£èŠå矀ïŒnormalizerïŒã NG(S)N_G(S)NGâ(S) ãå°å ¥ããŠè°è«ãé²ããæºåãããŠããŸãã * ãã®ããšã®èšç®ã§ãã·ããŒéšå矀ã®åæ°ãnpn_pnpâ ã 1(modp)1 \pmod{p}1(modp) ã§ããããšãå°ãããŸãã ã€ãŸããã®ããŒãžã¯ïŒ # ååšã®èšŒæïŒã·ããŒéšå矀ã¯å¿ ãããïŒïŒ # 次㮠æå€§æ§ã»å ±åœ¹æ§ã»åæ°ã®æ¡ä»¶ ãžã®åžç³ïŒå ±åœ¹é¡ã»æ£èŠå矀ã®è©±ïŒ ãå±éããŠããæ®µéã§ãã ãããŸã§ã§ãã·ããŒéšå矀ã¯å¿ ãååšããããæç¢ºã«ãªããŸãããæ¬¡ã¯ãå«ãŸããããå ±åœ¹ããåæ°å¶éãã蚌æãããã§ãŒãºã«ç§»ããŸãã å·®ãæ¯ããªããã°ã4æç®ãèŠããŠããã ããŸããïŒ === User: 4æç®ã§ãã === 4æç®ã§ãã === Assistant: ããããšãããããŸãã4æç®ã§ã€ãã« ã·ããŒã®å®çã®4ãåæ°æ¡ä»¶ã ã蚌æãããŠããŸãããæŽçããŠã¿ãŸãããã === ããããšãããããŸãã4æç®ã§ã€ãã« ã·ããŒã®å®çã®(4)ãåæ°æ¡ä»¶ã ã蚌æãããŠããŸãããæŽçããŠã¿ãŸãããã ==== ããŒãžã®æµã ==== ===== (3) å ±åœ¹æ§ã«ã€ã㊠===== åããŒãžãŸã§ã§ * ã·ããŒéšå矀ã®ååš (1) * ä»»æã® ppp-éšå矀ã¯ã·ããŒéšå矀ã«å«ãŸãã (2) ãæžãã§ããŸãã ããã§ã¯ (3) å ±åœ¹æ§ã瀺ãåžç³ãšããŠãã·ããŒéšå矀ã®éå S\mathcal{S}S ã«å¯Ÿãã矀äœçšããèããŠããŸãã å ±åœ¹äœçš gâ S=gSgâ1g \cdot S = g S g^{-1}gâ S=gSgâ1 ã«ãã£ãŠãã·ããŒéšå矀å士ããåãè»éãã«å ¥ãããšã瀺ãããã¹ãŠã®ã·ããŒéšå矀ã¯äºãã«å ±åœ¹ã§ããããšãå°ããŸãã ===== (4) åæ°æ¡ä»¶ ===== ã·ããŒéšå矀ã®éåã S\mathcal{S}S ãšãããšã â£Sâ£=âiâ£OG(Si)â£|\mathcal{S}| = \sum_i |O_G(S_i)|â£Sâ£=iâââ£OGâ(Siâ)⣠ãšè»éåè§£ãããŸãïŒâ£OG(Si)â£|O_G(S_i)|â£OGâ(Siâ)⣠ã¯è»éã®å€§ããïŒã ãããšæ¬¡ãæç«ïŒ â£Sâ£â¡1(modp).|\mathcal{S}| \equiv 1 \pmod{p}.â£Sâ£â¡1(modp). * ããã¯ãåæ°ã 1âmodâp1 \bmod p1modp ã§ããããšããã·ããŒã®å®çã®æåãªçµè«ã * ããã«ãåè»éã®å€§ããã qqq ãå²ããããæçµçã«ãnpâ¡1 (mod p)n_p \equiv 1 \ (\mathrm{mod}\ p)npââ¡1 (mod p) ã〠npâ£qn_p \mid qnpââ£qããåºãŠããŸãã ==== ãã®ããŒãžã®ãã€ã³ã ==== * ã·ããŒã®å®çã®ãã¹ãŠã®äž»åŒµ (1)ã(4) ãåºæã£ãïŒ * ç¹ã«ãåæ°æ¡ä»¶ãã¯ãååã®è£é¡ïŒ(pqp)â¡q(modp)\binom{p^q}{p} \equiv q \pmod{p}(ppqâ)â¡q(modp)ïŒãšã矀äœçšã«ããè»éåè§£ããå·§ã¿ã«çµã¿åããã£ãŠåºãŠããŠããŸãã ==== äŸã»ç·Žç¿åé¡ ==== * äŸ15.1 æéã¢ãŒãã«çŸ€ã«å¯ŸããŠã¯ãã¢ãŒãã«çŸ€ã®åºæ¬å®çããçŽååè§£ãããã®ã§ãã·ããŒéšå矀ãèªç¶ã«çŸããããšã確èªããäŸã * å15.1 ã§ã¯ S3S_3S3â ã®ã·ã㌠2-éšå矀ãã·ã㌠3-éšå矀ããã¹ãŠæžãäžãåé¡ããšãŠãæšæºçã§è¯ãæŒç¿ã§ãã ãã®æç¹ã§ ã·ããŒã®å®çãã®ãã®ã®èšŒæ ã¯äžéãå®çµããŸããã æ¬¡ã«åºãŠãããåœé¡ 15.1ããªã©ã¯ããã®æ§è³ªãããã«æŽçããããã®è£å©å®çïŒæ£èŠå矀ã«é¢ãããã®ïŒã§ãã ãããããã°ãæåŸã®5æç®ãèŠããŠããã ããã°ããã®ãè£è¶³åœé¡ããå ·äœäŸã®ç¢ºèªãŸã§ãäžç·ã«æŽçã§ããŸãã === User: 1æç®ã衚çŽãšããŠæ°ããŸãããåŸã£ãŠäžãŸã§ã§ãèŠãããŸãã®ã¯çµããã®ã€ããã§ããã === 1æç®ã衚çŽãšããŠæ°ããŸãããåŸã£ãŠäžãŸã§ã§ãèŠãããŸãã®ã¯çµããã®ã€ããã§ããã === Assistant: ãªãã»ã©ã衚çŽãå«ããŠã®5æã§ãããããããŸã§ã§ã¡ããã© å ç°å çã®ã代æ°å ¥éãã«ãããã·ããŒã®å®çã®å±éãäžåšããããšã«ãªããŸãã === ãªãã»ã©ã衚çŽãå«ããŠã®5æã§ãããããããŸã§ã§ã¡ããã© å ç°å çã®ã代æ°å ¥éãã«ãããã·ããŒã®å®çã®å±éãäžåšããããšã«ãªããŸãã æŽçãããšââ ==== 蚌æã®æµãïŒæ¬ã«æ²¿ã£ãŠïŒ ==== # è£é¡ïŒ15.1ïŒ äºé ä¿æ°ã®åååŒ (pqp)â¡q(modp)\binom{p^q}{p} \equiv q \pmod{p}(ppqâ)â¡q(modp) ã蚌æãããã¯åŸã§ãã·ããŒéšå矀ã®åæ°ãã®è°è«ã«å¿ èŠã # å®çŸ© äœæ° â£Gâ£=pnq|G| = p^n qâ£Gâ£=pnq ã®æé矀 GGG ã«å¯Ÿããäœæ° pnp^npn ã®éšå矀ããã·ã㌠ppp-éšå矀ããšããã # å®çïŒã·ããŒã®å®çïŒ 1. ã·ã㌠ppp-éšå矀ã¯å¿ ãååšããã 2. ä»»æã® ppp-éšå矀ã¯ã·ã㌠ppp-éšå矀ã«å«ãŸããã 3. ã·ã㌠ppp-éšå矀ã¯äºãã«å ±åœ¹ã§ããã 4. ã·ã㌠ppp-éšå矀ã®åæ° npn_pnpâ 㯠npâ¡1(modp),npâ£qn_p \equiv 1 \pmod{p}, \quad n_p \mid qnpââ¡1(modp),npââ£q ãæºããã # 蚌æã®æŠç¥ - éšåéå XXXïŒå€§ãã pnp^npn ã®éšåéåå šäœïŒã«çŸ€ GGG ãäœçšããã - è»éåè§£ã»å®å®å矀ã®è°è«ãéããŠãã·ããŒéšå矀ã®ååšããä¿èšŒã - å ±åœ¹äœçšãéããŠãäºãã«å ±åœ¹ã§ãããããšã瀺ãã - è»éã®å€§ãããæ°ãäžããè£é¡ã®åååŒãçšããŠãåæ°æ¡ä»¶ npâ¡1(modp)n_p \equiv 1 \pmod{p}npââ¡1(modp)ããå°ãã ==== ãã€ã³ã ==== * ã·ããŒã®å®çã¯ãæé矀ãåè§£ããããã®æåŒ·ããŒã«ããšèšãããçç±ãã¯ã£ããããŸãã ååšã»æå€§æ§ã»å ±åœ¹æ§ã»åæ°æ¡ä»¶ã®ã»ããã§çŸ€æ§é ãçžãããã§ãã * äŸãã° S3S_3S3â ã®å Žåãã·ããŒ2-éšå矀ã¯3åãã·ããŒ3-éšå矀ã¯1åããšããçµæãç°¡åã«ç¢ºèªã§ãããåæ°æ¡ä»¶ãããããã«æºãããŸãã ==== åŠã³ã®ã³ã ==== * ååšã®éšåã¯ã矀äœçšãšå®å®å矀ãã®äœ¿ãæ¹ãçè§£ããç·Žç¿ã«ãªãã * å ±åœ¹æ§ã¯ãå ±åœ¹äœçšãïŒã矀ãèªåã®éšå矀ã®éåã«äœçšãããããšãæèããã * åæ°æ¡ä»¶ã¯ãè»éåè§£ããšãè£é¡ã®åååŒããåã¿åãç®æã«æ³šç®ããã ã€ãŸããããªããæã«ããŠãããã®æ¬ã¯ãã·ããŒã®å®çãã矀äœçšããå®å®å矀ããè»éåè§£ããæ°è«çè£é¡ããšããã代æ°åŠã®åºæ¬çãªææ³ãäžæ°ã«åŸ©ç¿ã§ããææã«ãªã£ãŠããŸãã ãããããã°ã次ã¯å®éã« S3S_3S3â, S4S_4S4â, D8D_8D8âïŒäºé¢äœçŸ€ïŒ ãããã§ã·ããŒéšåçŸ€ãæ¢ããŠã¿ããšãå®çã®çããåããç®ã§èŠããããã«ãªããŸãã ââããã§äžæ¯ã€ããŸãããããå°ãé²ãã§ãã¢ãŒãã«çŸ€ã®ã·ããŒéšå矀åè§£ãããæ£èŠå矀ãšã·ããŒéšå矀ã®é¢ä¿ããŸã§è§Šãããã§ããïŒ
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)