Home
Random
Log in
Settings
About freem
Disclaimers
freem
Search
Editing
Openai/6936f996-e124-8004-a264-0b3da0e38976
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{DISPLAYTITLE:Analytical integration solution}} ''This conversation was exported from ChatGPT''<ref>{{cite web|title=Analytical integration solution|url=https://chatgpt.com/share/6936f996-e124-8004-a264-0b3da0e38976|publisher=ChatGPT|access-date=2025-12-09}}</ref> == gpt-5-1-thinking == === User: Can it be taken analytically? === Can it be taken analytically? === Assistant: Yes, it can be integrated in closed form. === Yes, it can be integrated in closed form. β«3x3βx2+2xβ4x2β3x+2βdx=x2β3x+2(x2+134x+1018)+13516lnβ‘ββ£β£2xβ3+2x2β3x+2β£+C.\int \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx = \sqrt{x^{2}-3x+2}\left(x^{2}+\frac{13}{4}x+\frac{101}{8}\right) +\frac{135}{16}\ln\!\left|2x-3+2\sqrt{x^{2}-3x+2}\right|+C.β«x2β3x+2β3x3βx2+2xβ4βdx=x2β3x+2β(x2+413βx+8101β)+16135βlnβ2xβ3+2x2β3x+2ββ+C. Sketch of how to get it: # Denote Q(x)=x2β3x+2Q(x)=x^{2}-3x+2Q(x)=x2β3x+2. Look for an antiderivative of the form Q(x)(Ax2+Bx+C)+KQ(x)\sqrt{Q(x)}(Ax^{2}+Bx+C)+\dfrac{K}{\sqrt{Q(x)}}Q(x)β(Ax2+Bx+C)+Q(x)βKβ. # Differentiate this expression, collect terms over Q(x)\sqrt{Q(x)}Q(x)β, and match the resulting polynomial in the numerator with 3x3βx2+2xβ43x^{3}-x^{2}+2x-43x3βx2+2xβ4. Solving for A,B,C,KA,B,C,KA,B,C,K gives A=1,β βB=134,β βC=1018,β βK=13516A=1,\;B=\tfrac{13}{4},\;C=\tfrac{101}{8},\;K=\tfrac{135}{16}A=1,B=413β,C=8101β,K=16135β. # The remaining integral β«dxx2β3x+2\displaystyle \int \frac{dx}{\sqrt{x^{2}-3x+2}}β«x2β3x+2βdxβ is handled by completing the square x2β3x+2=(xβ32)2β(12)2x^{2}-3x+2=(x-\tfrac32)^2-(\tfrac12)^2x2β3x+2=(xβ23β)2β(21β)2 and using β«dxx2βa2=lnβ‘β£x+x2βa2β£+C.\displaystyle \int \frac{dx}{\sqrt{x^{2}-a^{2}}} =\ln\left|x+\sqrt{x^{2}-a^{2}}\right|+C.β«x2βa2βdxβ=lnβx+x2βa2ββ+C. Combining gives the result above. === User: So, what is the analytical answer, and then calculate the answer from the analytical answer to get number. === So, what is the analytical answer, and then calculate the answer from the analytical answer to get number. === Assistant: Letβs write the integral clearly: === Letβs write the integral clearly: β«3x3βx2+2xβ4x2β3x+2βdx\int \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dxβ«x2β3x+2β3x3βx2+2xβ4βdx ===== 1. Analytical antiderivative ===== One antiderivative is F(x)=x2β3x+2(x2+134x+1018)+13516lnβ‘ββ£β£2xβ3+2x2β3x+2β£+C.F(x)=\sqrt{x^{2}-3x+2}\left(x^{2}+\frac{13}{4}x+\frac{101}{8}\right) +\frac{135}{16}\ln\!\left|2x-3+2\sqrt{x^{2}-3x+2}\right|+C.F(x)=x2β3x+2β(x2+413βx+8101β)+16135βlnβ2xβ3+2x2β3x+2ββ+C. (Differentiating F(x)F(x)F(x) gives exactly the integrand.) ===== 2. Definite integral (taking limits ===== 0 0 to 1 1) Your picture shows a lower limit 000; the natural upper limit, given the domain of (xβ1)(xβ2)\sqrt{(x-1)(x-2)}(xβ1)(xβ2)β, is 111. Assuming the integral is β«013x3βx2+2xβ4x2β3x+2βdx,\int_{0}^{1} \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx,β«01βx2β3x+2β3x3βx2+2xβ4βdx, we plug into F(x)F(x)F(x): β«013x3βx2+2xβ4x2β3x+2βdx=F(1)βF(0)=β10182β13516lnβ‘ββ£(3β22).\int_{0}^{1} \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx =F(1)-F(0) =-\frac{101}{8}\sqrt{2}-\frac{135}{16}\ln\!\bigl(3-2\sqrt{2}\bigr).β«01βx2β3x+2β3x3βx2+2xβ4βdx=F(1)βF(0)=β8101β2ββ16135βln(3β22β). Numerically (to 10 digits): β«01β―dxββ2.981266944.\int_{0}^{1} \cdots dx \approx -2.981266944.β«01ββ―dxββ2.981266944. Confidence this is correct: ~99% (symbolically checked by differentiating the antiderivative and by direct numeric integration). === User: I did not ask numerically integrate. === I did not ask numerically integrate. Calculate from your analytical answer to definite integral. === Assistant: Let me assume the definite integral is === Let me assume the definite integral is I=β«013x3βx2+2xβ4x2β3x+2βdx,I=\int_{0}^{1} \frac{3x^{3}-x^{2}+2x-4}{\sqrt{x^{2}-3x+2}}\,dx ,I=β«01βx2β3x+2β3x3βx2+2xβ4βdx, since x2β3x+2=(xβ1)(xβ2)\sqrt{x^{2}-3x+2}=\sqrt{(x-1)(x-2)}x2β3x+2β=(xβ1)(xβ2)β is real on [0,1][0,1][0,1]. ===== 1. Analytical evaluation ===== An antiderivative is F(x)=x2β3x+2(x2+134x+1018)+13516lnβ‘ββ£(2xβ3+2x2β3x+2).F(x)=\sqrt{x^{2}-3x+2}\left(x^{2}+\frac{13}{4}x+\frac{101}{8}\right) +\frac{135}{16}\ln\!\bigl(2x-3+2\sqrt{x^{2}-3x+2}\bigr).F(x)=x2β3x+2β(x2+413βx+8101β)+16135βln(2xβ3+2x2β3x+2β). So I=F(1)βF(0).I = F(1)-F(0).I=F(1)βF(0). * At x=1x=1x=1: 1β3+2=0\sqrt{1-3+2}=01β3+2β=0, and the log term is lnβ‘(0)\ln(0)ln(0), which β ββ-\inftyββ, but multiplied by 0 from the prefactor in the derivation the limit is finite; easier is to use the symbolic simplification already done, which gives the exact result below. Carrying out the algebra (which SymPy also confirms) gives I=β10182β13516lnβ‘(3β22).I=-\frac{101}{8}\sqrt{2}-\frac{135}{16}\ln(3-2\sqrt{2}).I=β8101β2ββ16135βln(3β22β). Using (3β22)(3+22)=1βlnβ‘(3β22)=βlnβ‘(3+22)(3-2\sqrt{2})(3+2\sqrt{2})=1\Rightarrow \ln(3-2\sqrt{2})=-\ln(3+2\sqrt{2})(3β22β)(3+22β)=1βln(3β22β)=βln(3+22β), a slightly nicer exact form is βI=β10182+13516lnβ‘(3+22)β.\boxed{\,I=-\frac{101}{8}\sqrt{2}+\frac{135}{16}\ln(3+2\sqrt{2})\,}.I=β8101β2β+16135βln(3+22β)β. That is the analytical answer. ===== 2. Numerical value from this formula (no numerical integration) ===== Use 2β1.4142135623730950,lnβ‘(3+22)β1.7627471740390861.\sqrt{2}\approx 1.4142135623730950,\qquad \ln(3+2\sqrt{2})\approx 1.7627471740390861.2ββ1.4142135623730950,ln(3+22β)β1.7627471740390861. Compute the two terms: β10182ββ12.625β 1.4142135623730950ββ17.854446224960325,-\frac{101}{8}\sqrt{2} \approx -12.625\cdot 1.4142135623730950 \approx -17.854446224960325,β8101β2βββ12.625β 1.4142135623730950ββ17.854446224960325, 13516lnβ‘(3+22)=8.4375β 1.7627471740390861β14.873179280954789.\frac{135}{16}\ln(3+2\sqrt{2}) =8.4375\cdot 1.7627471740390861 \approx 14.873179280954789.16135βln(3+22β)=8.4375β 1.7627471740390861β14.873179280954789. Add them: Iββ17.854446224960325+14.873179280954789ββ2.981266944005536.I \approx -17.854446224960325 +14.873179280954789 \approx -2.981266944005536.Iββ17.854446224960325+14.873179280954789ββ2.981266944005536. So Iββ2.9812669440\boxed{I\approx -2.9812669440}Iββ2.9812669440β (from the closed-form expression, accuracy β³10 significant digits). == References == <references /> [[Category:ChatGPT Shares]] [[Category:openai]]
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite web
(
edit
)
Module:Citation/CS1
(
edit
)
Module:Citation/CS1/COinS
(
edit
)
Module:Citation/CS1/Configuration
(
edit
)
Module:Citation/CS1/Date validation
(
edit
)
Module:Citation/CS1/Identifiers
(
edit
)
Module:Citation/CS1/Utilities
(
edit
)
Module:Citation/CS1/Whitelist
(
edit
)
Module:Citation/CS1/styles.css
(
edit
)