Home
Random
Log in
Settings
About freem
Disclaimers
freem
Search
Editing
Openai/68b970ce-1e04-8005-85da-9f2468b66517
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{DISPLAYTITLE:2026 9ėŖØ ģķ}} ''This conversation was exported from ChatGPT''<ref>{{cite web|title=2026 9ėŖØ ģķ|url=https://chatgpt.com/share/68b970ce-1e04-8005-85da-9f2468b66517|publisher=ChatGPT|access-date=2025-11-17}}</ref> == gpt-5-thinking == === User: ė¤ķķØģ fxģ ķ ė¶ģ ģ ė¶ģ Fxė¼ ķź³ ,ķØģ 2fx+1ģ ķ ė¶ģ ģ ė¶ģ Gxė¼ ķģ. === ė¤ķķØģ f(x)ģ ķ ė¶ģ ģ ė¶ģ F(x)ė¼ ķź³ ,ķØģ 2f(x)+1ģ ķ ė¶ģ ģ ė¶ģ G(x)ė¼ ķģ. G(3)=2F(3)ģ¼ ė, G(5)-2F(5)ģ ź°ģ? === Assistant: ķģ“ ģģ“ėģ“ė HxGxā2FxHxGx-2FxHxGxā2Fx넼 ėė ź²ģ ėė¤. === ķģ“ ģģ“ėģ“ė H(x)=G(x)ā2F(x)H(x)=G(x)-2F(x)H(x)=G(x)ā2F(x)넼 ėė ź²ģ ėė¤. * Fā²(x)=f(x)F'(x)=f(x)Fā²(x)=f(x), Gā²(x)=2f(x)+1G'(x)=2f(x)+1Gā²(x)=2f(x)+1 ģ“ėÆė” Hā²(x)=Gā²(x)ā2Fā²(x)=(2f(x)+1)ā2f(x)=1H'(x)=G'(x)-2F'(x)=(2f(x)+1)-2f(x)=1Hā²(x)=Gā²(x)ā2Fā²(x)=(2f(x)+1)ā2f(x)=1. * ė°ė¼ģ H(x)=x+CH(x)=x+CH(x)=x+C. 주ģ“ģ§ G(3)=2F(3)G(3)=2F(3)G(3)=2F(3)ė H(3)=0H(3)=0H(3)=0ģ ģ미ķėÆė” 3+C=03+C=03+C=0, ģ¦ C=ā3C=-3C=ā3. ė°ė¼ģ H(x)=xā3H(x)=x-3H(x)=xā3ģ“ź³ , G(5)ā2F(5)=H(5)=5ā3=2.G(5)-2F(5)=H(5)=5-3=2.G(5)ā2F(5)=H(5)=5ā3=2. ģ ėµ: 222. (ķ¹ģ fffģ ķķģ 묓ź“ķź² ģ±ė¦½ķ©ėė¤.) === User: ėŖØė ķģ“ ģģģø ė±ė¹ģģ“ {an}ģ 첫째ķė¶ķ° ģ nķź¹ģ§ģ ķ©ģ Snģ“ė¼ ķģ. === ėŖØė ķģ“ ģģģø ė±ė¹ģģ“ {a_n}ģ 첫째ķė¶ķ° ģ nķź¹ģ§ģ ķ©ģ S_nģ“ė¼ ķģ. a_2=1, ģź·øė§k=1~6, {(-1)^k ź³±ķźø° S_k}=21ģ¼ ė, S_2+S_7ģ ź°ģ? === Assistant: ė±ė¹ģģ“ģ 첫째ķģ aaa, ź³µė¹ė„¼ rrrė¼ ėė©“ a2ar1a2ar1a2āar1ģ“ėÆė” a1ra\dfrac1rar1āģ ėė¤. === ė±ė¹ģģ“ģ 첫째ķģ aaa, ź³µė¹ė„¼ rrrė¼ ėė©“ a2=ar=1a_2=ar=1a2ā=ar=1ģ“ėÆė” a=1ra=\dfrac1ra=r1āģ ėė¤. rā 1r\neq1rī =1ģ¼ ė Sk=aā1ārk1ār=1rā 1ārk1ār.S_k=a\,\frac{1-r^k}{1-r}=\frac{1}{r}\cdot\frac{1-r^k}{1-r}.Skā=a1ār1ārkā=r1āā 1ār1ārkā. 주ģ“ģ§ ģ”°ź±“ģ ź³ģ°ķė©“ āk=16(ā1)kSk=1r(1ār)āk=16(ā1)k(1ārk)=ā1r(1ār)āk=16(ār)k.\sum_{k=1}^{6}(-1)^k S_k =\frac{1}{r(1-r)}\sum_{k=1}^{6}(-1)^k(1-r^k) =-\frac{1}{r(1-r)}\sum_{k=1}^{6}(-r)^k.k=1ā6ā(ā1)kSkā=r(1ār)1āk=1ā6ā(ā1)k(1ārk)=ār(1ār)1āk=1ā6ā(ār)k. ė±ė¹ķ© ź³µģģ ģ°ė©“ āk=16(ār)k=ārā(1ā(ār)6)1+r\sum_{k=1}^{6}(-r)^k=\frac{-r\,(1-(-r)^6)}{1+ r}k=1ā6ā(ār)k=1+rār(1ā(ār)6)ā ģ“ėÆė” āk=16(ā1)kSk=1ār6(1ār)(1+r)=1ār61ār2=1+r2+r4.\sum_{k=1}^{6}(-1)^k S_k =\frac{1-r^6}{(1-r)(1+r)} =\frac{1-r^6}{1-r^2} =1+r^2+r^4.k=1ā6ā(ā1)kSkā=(1ār)(1+r)1ār6ā=1ār21ār6ā=1+r2+r4. ģ”°ź±“ģ“ =21=21=21ģ“ėÆė” 1+r2+r4=21ār4+r2ā20=0.1+r^2+r^4=21\quad\Rightarrow\quad r^4+r^2-20=0.1+r2+r4=21ār4+r2ā20=0. y=r2y=r^2y=r2ė” ėė©“ y2+yā20=0āy=4y^2+y-20=0\Rightarrow y=4y2+yā20=0āy=4 (ģģ ķ“ė ė°°ģ ). ėŖØė ķģ“ ģģģ“ėÆė” r=4=2r=\sqrt{4}=2r=4ā=2. ė°ė¼ģ a=12a=\dfrac{1}{2}a=21āģ“ź³ Sn=12(2nā1).S_n=\frac12(2^n-1).Snā=21ā(2nā1). ģķė ź°ģ S2+S7=12(22ā1)+12(27ā1)=12(3+127)=65.S_2+S_7=\frac12(2^2-1)+\frac12(2^7-1)=\frac12(3+127)=65.S2ā+S7ā=21ā(22ā1)+21ā(27ā1)=21ā(3+127)=65. ģ ėµģ 656565ģ ėė¤. === User: ģź° t0ģ¼ ė ģģ ģģ ģ¶ė°ķģ¬ ģģ§ģ ģ넼 ģģ§ģ“ė ģ Pź° ģė¤. === ģź° t=0ģ¼ ė ģģ ģģ ģ¶ė°ķģ¬ ģģ§ģ ģ넼 ģģ§ģ“ė ģ Pź° ģė¤. ģź°ģ“ t(t>=0)ģ¼ ė ģ Pģ ģė v(t)ź° v(t)=3t^2-10t+7ģ“ė¤. ė¤ģ ģ¤ ģ³ģ ź²ģ ģė ėė” ź³ ė„“ė©“? ć±. ģź° t=1ģ¼ ė ģ Pģ ģ“ė ė°©ķ„ģ“ ė°ėė¤. ć“. ģź° t=1ģ¼ ė ģ Pģ ģģ¹ė 3ģ“ė¤. ć·. ģź° t=0ģģ t=2ź¹ģ§ ģ Pź° ģģ§ģø 거리ė 4ģ“ė¤. === Assistant: ė¤ ģ³ģµėė¤. === ė¤ ģ³ģµėė¤. ģ¦, ć±, ć“, ć·. ģ“ģ 넼 ź°ėØķ ķģøķź² ģµėė¤. # ģ“ė ė°©ķ„ ė³ķ(ć±) v(t)=3t2ā10t+7=3(tā1)āā£(tā73)v(t)=3t^2-10t+7=3(t-1)\!\left(t-\frac{7}{3}\right)v(t)=3t2ā10t+7=3(tā1)(tā37ā). t=1t=1t=1ź³¼ t=73t=\frac{7}{3}t=37āģģ 0ģ“ ėź³ , ź³ģ 3>03>03>0ģ“ėÆė” t<1t<1t<1ģģė v>0v>0v>0, 1<t<731<t<\frac{7}{3}1<t<37āģģė v<0v<0v<0, t>73t>\frac{7}{3}t>37āģģė v>0v>0v>0. ė°ė¼ģ t=1t=1t=1ģģ ė¶ķøź° +āā+\to-+āāė” ė°ėģ“ ė°©ķ„ģ“ ė°ėėė¤. # ģģ¹ t=1t=1t=1 (ć“) ģģ¹ x(t)x(t)x(t)ė x(0)=0x(0)=0x(0)=0ģģ ģ¶ė°, x(t)=ā«0tv(Ļ)ādĻ=t3ā5t2+7t\displaystyle x(t)=\int_0^t v(\tau)\,d\tau=t^3-5t^2+7tx(t)=ā«0tāv(Ļ)dĻ=t3ā5t2+7t. x(1)=1ā5+7=3\displaystyle x(1)=1-5+7=3x(1)=1ā5+7=3. ė§ģµėė¤. # ģ“ė ź±°ė¦¬ t=0ā2t=0-2t=0ā2 (ć·) 0ā10-10ā1ģģė v>0v>0v>0, 1ā21-21ā2ģģė v<0v<0v<0. 거리 =ā«01vādtāā«12vādt=\int_0^1 v\,dt-\int_1^2 v\,dt=ā«01āvdtāā«12āvdt. ā«01vādt=x(1)āx(0)=3\int_0^1 v\,dt=x(1)-x(0)=3ā«01āvdt=x(1)āx(0)=3, ā«12vādt=x(2)āx(1)=(2ā3)=ā1\int_1^2 v\,dt=x(2)-x(1)=(2-3)=-1ā«12āvdt=x(2)āx(1)=(2ā3)=ā1. ė°ė¼ģ 거리 =3ā(ā1)=4=3-(-1)=4=3ā(ā1)=4. ģ³ģµėė¤. ź²°ė” : ć±, ć“, ć· ėŖØė ģ°øģ ėė¤. === User: ģģ aa1ź³¼ ģģ tģ ėķģ¬ ź³”ģ ya^xģ ė ģ§ģ xt, x2tź° ė§ėė ģ ģ ź°ź° A, Bė¼ ķź³ , ģ Bģģ xģ¶ģ ė“린 ģģ ģ ė°ģ Cė¼ ķģ. === ģģ a(a>1)ź³¼ ģģ tģ ėķģ¬ ź³”ģ y=a^xģ ė ģ§ģ x=t, x=2tź° ė§ėė ģ ģ ź°ź° A, Bė¼ ķź³ , ģ Bģģ xģ¶ģ ė“린 ģģ ģ ė°ģ Cė¼ ķģ. Aģ B ģ¬ģ“ģ ź±°ė¦¬ģ, Aģ C ģ¬ģ“ģ ź±°ė¦¬ė ź°ź³ , ģ¼ź°ķ ACBģ ėģ“ź° 8ģ¼ ė, atģ ź°ģ? === Assistant: ķģ“넼 ģ ė¦¬ķź² ģµėė¤. === ķģ“넼 ģ ė¦¬ķź² ģµėė¤. (문맄ģ ė§ģ§ė§ģ āatāė ė³“ķµ ata^tatģ ģ¤źø°ė” ė§ģ“ ėģ¤ėÆė”, 먼ģ ata^tat넼 źµ¬ķź³ , ģ ė§ė” aĆta\times taĆt넼 ė¬¼ģ ź²½ģ°ģ ź°ė ķØź» ģ ģķź² ģµėė¤.) ģ ė¤ģ ģ¢ķė A=(t,Ā at),B=(2t,Ā a2t),C=(2t,Ā 0)A=(t,\ a^t),\quad B=(2t,\ a^{2t}),\quad C=(2t,\ 0)A=(t,Ā at),B=(2t,Ā a2t),C=(2t,Ā 0) ģ ėė¤. ===== AB2=(2tāt)2+(a2tāat)2=t2+a2t(atā1)2,AB^2=(2t-t)^2+(a^{2t}-a^t)^2=t^2+a^{2t}(a^t-1)^2,AB2=(2tāt)2+(a2tāat)2=t2+a2t(atā1)2, ===== AC2=(2tāt)2+(0āat)2=t2+a2t.AC^2=(2t-t)^2+(0-a^t)^2=t^2+a^{2t}.AC2=(2tāt)2+(0āat)2=t2+a2t. AB=ACAB=ACAB=AC ģ“ėÆė” ė ģ ź³±ģ ź°ź² ėė©“ t2+a2t(atā1)2=t2+a2tĀ āĀ (atā1)2=1.t^2+a^{2t}(a^t-1)^2=t^2+a^{2t}\ \Rightarrow\ (a^t-1)^2=1.t2+a2t(atā1)2=t2+a2tĀ āĀ (atā1)2=1. a>1,Ā t>0a>1,\ t>0a>1,Ā t>0 ģ“ėÆė” at>0a^t>0at>0. ė°ė¼ģ atā1=±1a^t-1=\pm1atā1=±1 ģ¤ģģ at=2a^t=2at=2ė§ ź°ė„. ===== ė³ CBCBCBė ģģ§ģ ģ“ź³ źøøģ“ź° a2ta^{2t}a2t, ģ AAAģģ ģ§ģ x=2tx=2tx=2tź¹ģ§ģ ģķź±°ė¦¬ė ttt. ===== ė°ė¼ģ ėģ“=12ā (ė°ė³Ā CB)ā (ėģ“)=12ā a2tā t=8.\text{ėģ“}=\frac12\cdot (\text{ė°ė³ }CB)\cdot (\text{ėģ“})=\frac12\cdot a^{2t}\cdot t=8.ėģ“=21āā (ė°ė³Ā CB)ā (ėģ“)=21āā a2tā t=8. ģģģ at=2a^t=2at=2ģ“ėÆė” a2t=4a^{2t}=4a2t=4. ė°ė¼ģ 12ā 4ā t=8Ā āĀ t=4.\frac12\cdot 4\cdot t=8 \ \Rightarrow\ t=4.21āā 4ā t=8Ā āĀ t=4. ź·øė¬ė©“ a=21/4a=2^{1/4}a=21/4. ==== - ė³“ķµ ģėė 물ģģø ata^tat ģ ź°ģ ==== at=2.\boxed{a^t=2}.at=2ā. * ė§ģ½ ģ ė§ė” aĆta\times taĆt 넼 ė¬»ė ź²ģ“ė¼ė©“ at=4ā 21/4.\boxed{a t=4\cdot 2^{1/4}}.at=4ā 21/4ā. === User: ķØģ fxx^2+6x+12ģ ėķģ¬ ė¤ģ 씰걓ģ ė§ģ”±ģķ¤ė ėŖØė ģ ģ kģ ź°ģė? === ķØģ f(x)=x^2+6x+12ģ ėķģ¬ ė¤ģ 씰걓ģ ė§ģ”±ģķ¤ė ėŖØė ģ ģ kģ ź°ģė? 씰걓: ėŖØė ģ¤ģ aģ ėķģ¬, lim (x->a) x^2/[(f(x))^2-k(x+2)f(x)]ģ ź°ģ“ 씓ģ¬ķė¤. === Assistant: ķ“ź²°ģ ķµģ¬ģ ė¶ėŖØė„¼ ģøģė¶ķ“ķė ź²ģ ėė¤. === ķ“ź²°ģ ķµģ¬ģ ė¶ėŖØė„¼ ģøģė¶ķ“ķė ź²ģ ėė¤. f(x)=x2+6x+12=(x+3)2+3>0f(x)=x^2+6x+12=(x+3)^2+3>0f(x)=x2+6x+12=(x+3)2+3>0 ģ“ėÆė”, (f(x))2āk(x+2)f(x)=f(x)(f(x)āk(x+2))(f(x))^2-k(x+2)f(x)=f(x)\big(f(x)-k(x+2)\big)(f(x))2āk(x+2)f(x)=f(x)(f(x)āk(x+2)) ģ“ź³ , ė¶ėŖØź° 0ģ“ ėė ģ¼ģ f(x)āk(x+2)=0f(x)-k(x+2)=0f(x)āk(x+2)=0ģ¼ ėėæģ ėė¤. ģ“넼 gk(x):=x2+(6āk)x+(12ā2k)=0g_k(x):=x^2+(6-k)x+(12-2k)=0gkā(x):=x2+(6āk)x+(12ā2k)=0 ģ“ė¼ ėź² ģµėė¤. ėŖØė ģ¤ģ aaaģģ ź·¹ķ limā”xāax2f(x)āgk(x)\displaystyle \lim_{x\to a}\frac{x^2}{f(x)\,g_k(x)}xāalimāf(x)gkā(x)x2ā ģ“ ģ”“ģ¬ķė ¤ė©“, * aā 0a\neq 0aī =0ģģė ė¶ėŖØź° 0ģ“ ėė©“ ģ ė©ėė¤(ė¶ģė x2x^2x2ė¼ aā 0a\neq 0aī =0ģģ 0ģ“ ģėėÆė” ė°ģ°). * a=0a=0a=0ģģė ė¶ėŖØź° 0ģ“ ėėė¼ė, ź·ø ģź±° ģ°Øģź° 2 ģ“ķģ“ė©“ ź·¹ķģ“ ģ ķķź² 씓ģ¬ķ ģ ģģµėė¤. ė°ė¼ģ ķģ©ėė ź²½ģ°ė # gk(x)g_k(x)gkā(x)ź° ģ¤ź·¼ģ“ ģ ķ ģģ ė, ķ¹ģ # gk(x)g_k(x)gkā(x)ģ ģ ģ¼ķ ģ¤ź·¼ģ“ x=0x=0x=0ģ“ź³ , ź·ø ź·¼ģ ģ°Øģź° 2ģø ź²½ģ°ģ ėė¤. ģ“ģ ķė³ģģ ė³“ź² ģµėė¤. Ī=(6āk)2ā4(12ā2k)=k2ā4kā12.\Delta=(6-k)^2-4(12-2k)=k^2-4k-12.Ī=(6āk)2ā4(12ā2k)=k2ā4kā12. Ī<0\Delta<0Ī<0ģ“ė©“ ģ¤ź·¼ģ“ ģģ¼ėÆė” ķģ©ė©ėė¤. Ī<0ā āāŗā āā2<k<6\Delta<0\iff -2<k<6Ī<0āŗā2<k<6 ģ“ź³ , ģ ģ kkkė {ā1,0,1,2,3,4,5}\{-1,0,1,2,3,4,5\}{ā1,0,1,2,3,4,5}. ź²½ź³ź°ģ ģ ź²ķ©ėė¤. * k=6k=6k=6: g6(x)=x2g_6(x)=x^2g6ā(x)=x2. ė¶ėŖØė f(x)āx2f(x)\,x^2f(x)x2ź° ėģ“ x=0x=0x=0ģģ ė¶ģ x2x^2x2ģ ģ ķķ ģź±°ėź³ , limā”xā0x2f(x)x2=1f(0)=112\displaystyle \lim_{x\to 0}\frac{x^2}{f(x)x^2}=\frac1{f(0)}=\frac1{12}xā0limāf(x)x2x2ā=f(0)1ā=121ā. ė¤ė„ø aā 0a\neq 0aī =0ģģė ė¶ėŖØ ā 0\neq 0ī =0. ā ķģ©. * k=ā2k=-2k=ā2: gā2(x)=x2+8x+16=(x+4)2g_{-2}(x)=x^2+8x+16=(x+4)^2gā2ā(x)=x2+8x+16=(x+4)2. x=ā4x=-4x=ā4ģģ ė¶ėŖØź° 0ģ“ģ§ė§ ė¶ģė 16ģ“ėÆė” ė°ģ°. ā ė¶ķ. ė°ė¼ģ 씰걓ģ ė§ģ”±ķė ģ ģ kkkė kā{ā1,0,1,2,3,4,5,6},k\in\{-1,0,1,2,3,4,5,6\},kā{ā1,0,1,2,3,4,5,6}, ģ“ 8ź°ģ ėė¤. ģ ėµ: 8. === User: ģģ kģ ėķģ¬ ģ§ķ© {x|0<x<3kpi/2, x is not kpi/2}ģģ ģ ģė ķØģ fxtanx/kź° ģė¤. === ģģ kģ ėķģ¬ ģ§ķ© {x|0<=x<3kpi/2, x is not kpi/2}ģģ ģ ģė ķØģ f(x)=tan(x/k)ź° ģė¤. ģ P(0, p) (p>0)ģ ģ§ėė©° xģ¶ģ ķķķ ģ§ģ ģ“ ķØģ y=f(x)ģ ź·øėķģ ė§ėė ė ģ ģ A, B(PA<PB. Bź° ģ Pė³“ė¤ ė©ė¦¬ ģė¤ė ė»)ė¼ ķź³ , ģ§ģ y=-pź° ķØģ y=f(x)ģ ź·øėķģ ė§ėė ģ ģ Cė¼ ķģ. Aģ B ģ¬ģ“ģ ź±°ė¦¬ė Pģ A ģ¬ģ“ģ ź±°ė¦¬ģ 3ė°°ģ“ė©°, ģ¼ź°ķ OCBģ ėģ“ź° 5pi/3ģ¼ ė, k+pģ ź°ģ? === Assistant: ķ“ģ¤ģ ģģ ģ źµģ ģ xxx-ģ¢ķ넼 tanā”\tantanģ ģ¼ė°ķ“ė” ģ ģ“ėź³ , 씰걓ģ ģģėė” ģ°ė ź²ģ ėė¤. === ķ“ģ¤ģ ģģ ģ źµģ ģ xxx-ģ¢ķ넼 tanā”\tantanģ ģ¼ė°ķ“ė” ģ ģ“ėź³ , 씰걓ģ ģģėė” ģ°ė ź²ģ ėė¤. * y=tanā”āā£(xk)y=\tan\!\left(\frac{x}{k}\right)y=tan(kxā)ģ y=pā(>0)y=p\,(>0)y=p(>0)ģ źµģ ė¤ģ A,BA,BA,Bė¼ ķė©“ xk=arctanā”p+Ļn(nāZ)\frac{x}{k}=\arctan p+\pi n\quad(n\in\mathbb{Z})kxā=arctanp+Ļn(nāZ) ģ“ź³ , 주ģ“ģ§ ģ ģģ 0ā¤x<3kĻ20\le x<\frac{3k\pi}{2}0ā¤x<23kĻāģģ AAAė xA=kĪø,Īø:=arctanā”pā(0,Ļ2),x_A=k\theta,\quad \theta:=\arctan p\in(0,\tfrac{\pi}{2}),xAā=kĪø,Īø:=arctanpā(0,2Ļā), BBBė xB=k(Īø+Ļ)x_B=k(\theta+\pi)xBā=k(Īø+Ļ) ģ ėė¤. ė°ė¼ģ AB=xBāxA=kĻ,PA=xA=kĪø.AB=x_B-x_A=k\pi,\qquad PA=x_A=k\theta.AB=xBāāxAā=kĻ,PA=xAā=kĪø. 씰걓 AB=3āPAAB=3\,PAAB=3PAė”ė¶ķ° kĻ=3kĪøĀ āĀ Īø=Ļ3Ā āĀ p=tanā”Īø=3.k\pi=3k\theta\ \Rightarrow\ \theta=\frac{\pi}{3}\ \Rightarrow\ p=\tan\theta=\sqrt{3}.kĻ=3kĪøĀ āĀ Īø=3ĻāĀ āĀ p=tanĪø=3ā. * ģ“ģ y=āp=ā3y=-p=-\sqrt{3}y=āp=ā3āź³¼ģ źµģ CCCė xk=āĪø+Ļn,Īø=Ļ3.\frac{x}{k}=-\theta+\pi n,\quad \theta=\frac{\pi}{3}.kxā=āĪø+Ļn,Īø=3Ļā. ģ ģģģģ ģ ķØķ ź²ģ u=xk=2Ļ/3u=\frac{x}{k}=2\pi/3u=kxā=2Ļ/3 ķėģ“ėÆė” xC=2kĻ3.x_C=\frac{2k\pi}{3}.xCā=32kĻā. * ģ¼ź°ķ OCBOCBOCBģ ėģ“ė (ģģ O=(0,0)O=(0,0)O=(0,0)) Area=12ā£xCā yBāyCā xBā£=12(2kĻ3ā 3ā(ā3)ā 4kĻ3)=kĻ3.\text{Area}=\frac12\left|x_C\cdot y_B-y_C\cdot x_B\right| =\frac12\left(\frac{2k\pi}{3}\cdot \sqrt{3}-(-\sqrt{3})\cdot \frac{4k\pi}{3}\right) =k\pi\sqrt{3}.Area=21āā£xCāā yBāāyCāā xBāā£=21ā(32kĻāā 3āā(ā3ā)ā 34kĻā)=kĻ3ā. ėģ“ź° 5Ļ/35\pi/35Ļ/3ģ“ėÆė” kĻ3=5Ļ3Ā āĀ k=533.k\pi\sqrt{3}=\frac{5\pi}{3}\ \Rightarrow\ k=\frac{5}{3\sqrt{3}}.kĻ3ā=35ĻāĀ āĀ k=33ā5ā. ė°ė¼ģ k+p=533+3=1439.k+p=\frac{5}{3\sqrt{3}}+\sqrt{3} =\frac{14\sqrt{3}}{9}.k+p=33ā5ā+3ā=9143āā. ģ ėµ: 1439\displaystyle \frac{14\sqrt{3}}{9}9143āā. === User: ģµź³ ģ°Øķģ ź³ģź° ģģģ“ź³ f00ģø ģ¼ģ°ØķØģ fxģ ėķģ¬ ķØģ gxintegral 0x, |ft|-|t|dtź° ė¤ģ 씰걓ģ ė§ģ”±ģķØė¤. === ģµź³ ģ°Øķģ ź³ģź° ģģģ“ź³ f(0)=0ģø ģ¼ģ°ØķØģ f(x)ģ ėķģ¬ ķØģ g(x)=integral 0~x, (|f(t)|-|t|)dtź° ė¤ģ 씰걓ģ ė§ģ”±ģķØė¤. (integralģģ 0ģ“ ģėė”, xź° ģė” ź°ė ķķ) (ź°) ė°©ģ ģ g'(x)=0ģ ģė” ė¤ė„ø ģ¤ź·¼ģ ź°ģė 4ģ“ė¤. (ė) ķØģ g(x)ė x=2, x=6ģģ ź·¹ź°ģ ź°ėė¤. f(6)ź³±ķźø°g(2)<0ģ¼ ė, f(8)ģ ź°ģ? === Assistant: ģ ėµ: f840f840f840 === ģ ėµ: f(8)=40f(8)=40f(8)=40 ģ¤ėŖ ģ ķµģ¬ė§ ģ§ź² ģµėė¤. # gā²(x)=ā£f(x)ā£āā£xā£g'(x)=|f(x)|-|x|gā²(x)=ā£f(x)ā£āā£x⣠ģ“ėÆė”, ė°©ģ ģ gā²(x)=0g'(x)=0gā²(x)=0ģ ķ“ė ź³§ ā£f(x)ā£=ā£xā£ā āā āāŗā āā āf(x)=xā āĀ ėėĀ ā āf(x)=āx|f(x)|= |x| \;\;\Longleftrightarrow\;\; f(x)=x \;\text{ ėė }\; f(x)=-xā£f(x)ā£=ā£xā£āŗf(x)=xĀ ėėĀ f(x)=āx ģ ķ“ė¤ģ ķ©ģ§ķ©ģ ėė¤. ėķ f(0)=0f(0)=0f(0)=0ģ“ėÆė” x=0x=0x=0ģ ķģ ķ“ģ ėė¤. # (ė)ģģ x=2,6x=2,6x=2,6ģ“ gggģ ź·¹ź°ģ ģ“ėÆė” gā²(2)=gā²(6)=0g'(2)=g'(6)=0gā²(2)=gā²(6)=0, ģ¦ ā£f(2)ā£=2,Ā ā£f(6)ā£=6|f(2)|=2,\ |f(6)|=6ā£f(2)ā£=2,Ā ā£f(6)ā£=6. ėķ (ź°)ģģ ģė” ė¤ė„ø ģ¤ź·¼ģ“ ģ ķķ 4ź°ģ“ėÆė”, ģ 첓 ķ“ė {0,2,6,ėĀ ķė}\{0,2,6,\text{ė ķė}\}{0,2,6,ėĀ ķė}ģ“ģ“ģ¼ ķ©ėė¤. # 씰걓 f(6)āg(2)<0f(6)\,g(2)<0f(6)g(2)<0ģ ė§ģ”±ģķ¤ė ¤ė©“, g(2)=ā«02(ā£fā£āt)ādtg(2)=\int_0^2(|f|-t)\,dtg(2)=ā«02ā(ā£fā£āt)dtģ ė¶ķøģ f(6)f(6)f(6)ģ ė¶ķøź° ė°ėģ¬ģ¼ ķ©ėė¤. ķ“넼 ķ ė²ģ ė§ė¤ ģ ģė ķģ¤ģ 구ģ±ģ ė¤ģź³¼ ź°ģµėė¤: āf(x)āx=14āx2(xā6)ā,āf(x)+x=14āx(xā2)(xā4)ā.\boxed{\,f(x)-x=\tfrac14\,x^2(x-6)\,},\qquad \boxed{\,f(x)+x=\tfrac14\,x(x-2)(x-4)\,}.f(x)āx=41āx2(xā6)ā,f(x)+x=41āx(xā2)(xā4)ā. ģ“ ė ģģ ģ°Øė ķģ 2x2x2xź° ėģ“ ķė±ģģ“ ė§ź³ , ė°ė¼ģ ķ ė¤ķģ fffź° ėģģ ė§ģ”±ķ©ėė¤. ģ¬źø°ģ gā²(x)=0g'(x)=0gā²(x)=0ģ ķ“ė x=0,2,4,6x=0,2,4,6x=0,2,4,6ģ¼ė” ģ ķķ 4ź°ģ“ź³ , ķ¹ķ f(6)ā6=14ā 62ā 0=0āf(6)=6>0,g(2)=ā«02(ā£fā£āt)ādt<0f(6)-6=\tfrac14\cdot6^2\cdot0=0\Rightarrow f(6)=6>0,\qquad g(2)=\int_0^2(|f|-t)\,dt<0f(6)ā6=41āā 62ā 0=0āf(6)=6>0,g(2)=ā«02ā(ā£fā£āt)dt<0 ź° ėģ“ f(6)āg(2)<0f(6)\,g(2)<0f(6)g(2)<0ė ģ¶©ģ”±ė©ėė¤(ė¶ķø ė³ķė źµ¬ź°ė³ė” fffź° y=±xy=\pm xy=±xģ ė§ėė ģėģ ģģ¹ģģ ė°ė” ķģøė©ėė¤). # ģ ķķģģ fff넼 ģ ź°ķė©“ f(x)=x+14x2(xā6)=14x3ā32x2+x.f(x)=x+\tfrac14x^2(x-6)=\tfrac14x^3-\tfrac32x^2+x.f(x)=x+41āx2(xā6)=41āx3ā23āx2+x. ė°ė¼ģ f(8)=14ā 83ā32ā 82+8=128ā96+8=40.f(8)=\tfrac14\cdot8^3-\tfrac32\cdot8^2+8 =128-96+8=40.f(8)=41āā 83ā23āā 82+8=128ā96+8=40. ė°ė¼ģ ģźµ¬ķė ź°ģ 40\boxed{40}40āģ ėė¤. === User: \documentclassa4paper,12pt{article} === \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \usepackage{kotex} % ķźµģ“ ģ¬ģ© ģ \begin{document} \paragraph{20.} 그림과 ź°ģ“ ģ¬ź°ķ \(ABCD\)ź° ķ ģģ ė“ģ ķź³ \(\overline{AB}:\overline{CD}=1:3,\ \overline{BC}<\overline{AD}\)ģ¼ ė, ģ§ģ \(AB\)ģ ģ§ģ \(CD\)ź° ė§ėė ģ ģ \(P\)ė¼ ķģ. \medskip ė¤ģģ \(\overline{PB}:\overline{PC}:\overline{BC}=7:5:\sqrt{14}\)ģ“ź³ \(\overline{AD}=4\sqrt{13}\)ģ¼ ė, ģ¼ź°ķ \(BPC\)ģ ģøģ ģģ ė°ģ§ė¦ģ źøøģ“넼 구ķė ź³¼ģ ģ“ė¤. \medskip \[ \angle BPC=\theta \text{ė¼ ķ ė, } \overline{PB}:\overline{PC}:\overline{BC}=7:5:\sqrt{14}\ \text{ģ“ėÆė”} \] ģ¼ź°ķ \(BPC\)ģģ ģ½ģ¬ģøė²ģ¹ģ ģķģ¬ \[ \cos\theta=\frac{6}{7}\,. \] \[ \overline{PB}:\overline{PC}=7:5 \text{ģģ } \overline{PB}=7k,\ \overline{PC}=5k,\qquad \overline{AB}:\overline{CD}=1:3 \text{ģģ } \overline{AB}=\ell,\ \overline{CD}=3\ell \text{ģ“ė¼ ķģ.} \] ģģ ģ±ģ§ģ ģķģ¬ ģ¼ź°ķ \(BPC\)ģ ģ¼ź°ķ \(DPA\)ź° ģė” ė®ģģ“ėÆė” \[ \overline{PB}:\overline{PC}=\overline{PD}:\overline{PA} \quad \text{ģ“ź³ },\qquad \ell=\boxed{(\text{ź°})}\,k \text{ģ“ė¤.} \] ģ¼ź°ķ \(BPC\)ģ ģ¼ź°ķ \(DPA\)ģ ė®ģė¹ź° \(1:\boxed{(\text{ė})}\)ģ“ėÆė” \[ \overline{BC}=\frac{1}{\boxed{(\text{ė})}}\times \overline{AD}\ \text{ģ“ė¤.} \] ė°ė¼ģ ģ¼ź°ķ \(BPC\)ģ ģøģ ģģ ė°ģ§ė¦ģ źøøģ“넼 \(R\)ģ“ė¼ ķ ė, ģ¼ź°ķ \(BPC\)ģģ ģ¬ģøė²ģ¹ģ ģķģ¬ \[ R=\boxed{(\text{ė¤})}\ \text{ģ“ė¤.} \] \medskip ģģ \((\text{ź°}),(\text{ė}),(\text{ė¤})\)ģ ģė§ģ ģ넼 ź°ź° \(p,q,r\)ģ“ė¼ ķ ė, \(p+q+r\)ģ ź°ģ 구ķģģ¤. \([4\text{ģ }]\) \end{document} === Assistant: ė¤ģź³¼ ź°ģ“ ėź² ģµėė¤. === ė¤ģź³¼ ź°ģ“ ėź² ģµėė¤. * PBā¾:PCā¾:BCā¾=7:5:14\overline{PB}:\overline{PC}:\overline{BC}=7:5:\sqrt{14}PB:PC:BC=7:5:14ā ģ“ėÆė” Ā PB=7k,Ā PC=5k,Ā BC=14āk\ PB=7k,\ PC=5k,\ BC=\sqrt{14}\,kĀ PB=7k,Ā PC=5k,Ā BC=14āk. * ā³BPC\triangle BPCā³BPCģģ ā BPC=Īø\angle BPC=\thetaā BPC=Īøė¼ ķė©“ cosā”Īø=PB2+PC2āBC22ā PBā PC=49+25ā142ā 7ā 5=67.\cos\theta=\frac{PB^{2}+PC^{2}-BC^{2}}{2\cdot PB\cdot PC} =\frac{49+25-14}{2\cdot 7\cdot 5}=\frac67.cosĪø=2ā PBā PCPB2+PC2āBC2ā=2ā 7ā 549+25ā14ā=76ā. ė°ė¼ģ sinā”Īø=1ā(67)2=137\sin\theta=\sqrt{1-\big(\tfrac67\big)^2}=\tfrac{\sqrt{13}}{7}sinĪø=1ā(76ā)2ā=713āā. * ģ ė°ģ źµģ PPPģ ėķ ķģ¤ ģ±ģ§ė” ā³BPCā¼ā³DPA\triangle BPC\sim \triangle DPAā³BPCā¼ā³DPA. ė°ė¼ģ ģ“ė¤ s>1s>1s>1ģ ėķģ¬ PD=sāPB,PA=sāPC,AD=sāBC.PD=s\,PB,\quad PA=s\,PC,\quad AD=s\,BC.PD=sPB,PA=sPC,AD=sBC. ķķø AB=ā£PAāPBā£=ā£5sā7ā£āk,CD=ā£PDāPCā£=ā£7sā5ā£ākAB=\lvert PA-PB\rvert=\lvert5s-7\rvert\,k,\quad CD=\lvert PD-PC\rvert=\lvert7s-5\rvert\,kAB=ā£PAāPBā£=ā£5sā7ā£k,CD=ā£PDāPCā£=ā£7sā5ā£k. 주ģ“ģ§ AB:CD=1:3AB:CD=1:3AB:CD=1:3ģģ ā£5sā7ā£ā£7sā5ā£=13\frac{\lvert5s-7\rvert}{\lvert7s-5\rvert}=\frac13ā£7sā5ā£ā£5sā7ā£ā=31ā 넼 ķė©“ s=2s=2s=2 (ėė 13/1113/1113/11)ź° ėģ¤ė©°, BC<ADBC<ADBC<AD ė° ėķģ ė°°ģ¹ģ ė¶ķ©ķė ķ“ė s=2s=2s=2ģ ėė¤. * ź·øė¬ė©“ AD=413=sāBC=2ā BCAD=4\sqrt{13}=s\,BC=2\cdot BCAD=413ā=sBC=2ā BCģ“ėÆė” BC=213BC=2\sqrt{13}BC=213ā. ģ²ģģ BC=14ākBC=\sqrt{14}\,kBC=14ākģ ė§ģ¶ė©“ k=21314k=\dfrac{2\sqrt{13}}{\sqrt{14}}k=14ā213āā. ģ“ģ 물ģģ ģø ģ¹øģ ģ±ģ°ė©“, # ā=AB=ā£5sā7ā£āk=ā£10ā7ā£āk=3k\ell=AB=\lvert5s-7\rvert\,k=|10-7|\,k=3kā=AB=ā£5sā7ā£k=ā£10ā7ā£k=3k ģ“ėÆė” (ź°)=3(\text{ź°})=3(ź°)=3. # ė®ģė¹ė 1:s=1:21:s=1:21:s=1:2ģ“ėÆė” (ė)=2(\text{ė})=2(ė)=2. # ā³BPC\triangle BPCā³BPCģģ ģ¬ģøė²ģ¹ģ¼ė” R=BC2sinā”Īø=14āk2ā (13/7)=714āk213=7ā 213213=7,R=\frac{BC}{2\sin\theta} =\frac{\sqrt{14}\,k}{2\cdot(\sqrt{13}/7)} =\frac{7\sqrt{14}\,k}{2\sqrt{13}} =\frac{7\cdot 2\sqrt{13}}{2\sqrt{13}}=7,R=2sinĪøBCā=2ā (13ā/7)14ākā=213ā714ākā=213ā7ā 213āā=7, ė°ė¼ģ (ė¤)=7(\text{ė¤})=7(ė¤)=7. ė°ė¼ģ p+q+r=3+2+7=12p+q+r=3+2+7=12p+q+r=3+2+7=12ģ ėė¤. === User: \documentclassa4paper,12pt{article} === \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \usepackage{kotex} % ķźµģ“ \begin{document} \paragraph{21.} ģµź³ ģ°Øķģ ź³ģź° 1ģø ģ¼ģ°ØķØģ \(f(x)\)ź° ė¤ģ 씰걓ģ ė§ģ”±ģķ¬ ė, \(f'(10)\)ģ ź°ģ 구ķģģ. \([4\text{ģ }]\) \medskip \noindent 0ģ“ ģė ėŖØė ģ¤ģ \(x\)ģ ėķģ¬ \[ \boxed{\ \frac{f'(x)}{2}+x^{2}-2 \ \le\ \frac{f(2x)-f(0)}{2x}\ \le\ x^{4}\ } \] ģ“ė¤. \end{document} === Assistant: ģ ėµ: 296\boxed{296}296ā === ģ ėµ: 296\boxed{296}296ā ķģ“넼 ź°ėØėŖ ė£ķź² ė³“ģ“ź² ģµėė¤. 먼ģ f(x)=x3+ax2+bx+cf(x)=x^{3}+ax^{2}+bx+cf(x)=x3+ax2+bx+c (ģµź³ ģ°ØķĀ ź³ģĀ 1)(\text{ģµź³ ģ°Øķ ź³ģ }1)(ģµź³ ģ°ØķĀ ź³ģĀ 1)ė¼ ėė©“ f(2x)āf(0)2x=8x3+4ax2+2bx2x=4x2+2ax+b.\frac{f(2x)-f(0)}{2x} =\frac{8x^{3}+4ax^{2}+2bx}{2x} =4x^{2}+2ax+b.2xf(2x)āf(0)ā=2x8x3+4ax2+2bxā=4x2+2ax+b. ėķ fā²(x)=3x2+2ax+bf'(x)=3x^{2}+2ax+bfā²(x)=3x2+2ax+bģ ėė¤. 주ģ“ģ§ ė¶ė±ģģ ėŖØė xā 0x\neq 0xī =0ģ ėķ“ fā²(x)2+x2ā2Ā ā¤Ā 4x2+2ax+bĀ ā¤Ā x4.(1)\frac{f'(x)}{2}+x^{2}-2\ \le\ 4x^{2}+2ax+b\ \le\ x^{4}. \tag{1}2fā²(x)ā+x2ā2Ā ā¤Ā 4x2+2ax+bĀ ā¤Ā x4.(1) === ģ¤ė„øģŖ½ģ === x4ā(4x2+2ax+b)Ā ā„Ā 0(āxā 0)x^{4}-\bigl(4x^{2}+2ax+b\bigr)\ \ge\ 0\qquad(\forall x\ne0)x4ā(4x2+2ax+b)Ā ā„Ā 0(āxī =0) ģ ėė¤. ģ¢ģ°ģ xxx ėģ āx-xāx넼 ėģ ķ ģģ ėķė©“ 2(x4ā4x2āb)Ā ā„Ā 0āx4ā4x2ābā„0Ā (āx).2\bigl(x^{4}-4x^{2}-b\bigr)\ \ge\ 0\quad\Rightarrow\quad x^{4}-4x^{2}-b\ge 0\ (\forall x).2(x4ā4x2āb)Ā ā„Ā 0āx4ā4x2ābā„0Ā (āx). ģ¢ė³ģ ģµģź°ģ x2=2x^{2}=2x2=2ģģ ā4-4ā4ģ“ėÆė” ābā¤ā4ā.(2)\boxed{\,b\le -4\,}. \tag{2}bā¤ā4ā.(2) === ģ¼ģŖ½ģ === (4x2+2ax+b)ā(3x2+2ax+b2)āx2+2=32x2+ax+(b2+2)Ā ā„Ā 0Ā (āx).\Bigl(4x^{2}+2ax+b\Bigr)-\Bigl(\tfrac{3x^{2}+2ax+b}{2}\Bigr)-x^{2}+2 =\tfrac{3}{2}x^{2}+ax+\Bigl(\tfrac{b}{2}+2\Bigr)\ \ge\ 0\ (\forall x).(4x2+2ax+b)ā(23x2+2ax+bā)āx2+2=23āx2+ax+(2bā+2)Ā ā„Ā 0Ā (āx). ģ“ė ģ“ģ°Øģģ“ ģ źµ¬ź°ģģ ā„0\ge0ā„0ģ“ėÆė” ķė³ģģ“ ģģ ģ“ķ: āa2ā¤3b+12ā.(3)\boxed{\,a^{2}\le 3b+12\,}. \tag{3}a2ā¤3b+12ā.(3) ź·øė°ė° (2)ė”ė¶ķ° bā¤ā4b\le -4bā¤ā4ģ“ėÆė” 3b+12ā¤03b+12\le 03b+12ā¤0. ė°ė¼ģ (3)ģ a2ā¤0āāa=0ā,āb=ā4ā.a^{2}\le 0\quad\Rightarrow\quad \boxed{\,a=0\,},\qquad \boxed{\,b=-4\,}.a2ā¤0āa=0ā,b=ā4ā. (ź²ģ°) ģ“ė f(2x)āf(0)2x=4x2ā4,fā²(x)2+x2ā2=3x2ā42+x2ā2=32x2ā„0,\frac{f(2x)-f(0)}{2x}=4x^{2}-4,\quad \frac{f'(x)}{2}+x^{2}-2=\frac{3x^{2}-4}{2}+x^{2}-2=\frac{3}{2}x^{2}\ge0,2xf(2x)āf(0)ā=4x2ā4,2fā²(x)ā+x2ā2=23x2ā4ā+x2ā2=23āx2ā„0, ė x4ā(4x2ā4)=(x2ā2)2ā„0x^{4}-\bigl(4x^{2}-4\bigr)=(x^{2}-2)^{2}\ge0x4ā(4x2ā4)=(x2ā2)2ā„0 ģ“ ėģ“ ģ”°ź±“ģ“ ėŖØė ė§ģ”±ė©ėė¤. === fā²(x)=3x2ā4f'(x)=3x^{2}-4fā²(x)=3x2ā4ģ“ėÆė” === fā²(10)=3ā 102ā4=300ā4=296.f'(10)=3\cdot 10^{2}-4=300-4=\boxed{296}.fā²(10)=3ā 102ā4=300ā4=296ā. === User: \documentclassa4paper,12pt{article} === \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \usepackage{kotex} % ķźµģ“ ģ¬ģ© \begin{document} \paragraph{22.} ź³”ģ \(y=\log_{2}x\) ģģ ģė” ė¤ė„ø ė ģ \(A, B\)ź° ģė¤. ģ \(A\)ģģ ģ§ģ \(y=x\)ģ ė“린 ģģ ģ ė°ģ \(P\)ė¼ ķź³ , ģ \(B\)넼 ģ§ģ \(y=x\)ģ ėķģ¬ ėģ¹ģ“ėķ ģ ģ \(Q\)ė¼ ķ ė, ė¤ ģ \(A,B,P,Q\)ź° ė¤ģ 씰걓ģ ė§ģ”±ģķØė¤. \medskip (ź°) \((\text{ģ§ģ } AP \text{ģ } y\text{ģ ķø})-(\text{ģ§ģ } BQ \text{ģ } y\text{ģ ķø})=\dfrac{13}{2}\). (ė) ģ§ģ \(AB\)ģ źø°ģøźø°ė \(\dfrac{6}{7}\)ģ“ė¤. \medskip ģ¬ź°ķ \(APQB\)ģ ėģ“ź° \(\dfrac{p}{q}\)ģ¼ ė, \(p+q\)ģ ź°ģ 구ķģģ¤. \((\text{ėØ, } p \text{ģ } q \text{ė ģė”ģģø ģģ°ģģ“ė¤.})\) \([4\text{ģ }]\) \end{document} === Assistant: ģ ėµ: 73\boxed{73}73ā === ģ ėµ: 73\boxed{73}73ā ģ¤ėŖ ė립ėė¤. ģ A=(a,logā”2a)A=(a,\log_{2}a)A=(a,log2āa), B=(b,logā”2b)B=(b,\log_{2}b)B=(b,log2āb)ė¼ ėė©“, źø°ģøźø° ā1-1ā1ģø ģ§ģ ģ yyy-ģ ķøģ x+yx+yx+yģ“ėÆė” * ģ§ģ APAPAPģ yyy-ģ ķøģ a+logā”2aa+\log_{2}aa+log2āa, * ģ§ģ BQBQBQģ yyy-ģ ķøģ b+logā”2bb+\log_{2}bb+log2ābģ ėė¤. ė°ė¼ģ (ź°)ģģ (a+logā”2a)ā(b+logā”2b)=132.(1)(a+\log_{2}a)-(b+\log_{2}b)=\frac{13}{2}. \tag{1}(a+log2āa)ā(b+log2āb)=213ā.(1) ėķ (ė)ģģ logā”2bālogā”2aābāaā=67.(2)\frac{\log_{2}b-\log_{2}a}{\,b-a\,}=\frac{6}{7}. \tag{2}bāalog2ābālog2āaā=76ā.(2) ģ¬źø°ģ u(x)=x+logā”2x,Ā v(x)=xālogā”2xu(x)=x+\log_{2}x,\ v(x)=x-\log_{2}xu(x)=x+log2āx,Ā v(x)=xālog2āx넼 ėė©“ u(a)āu(b)=(aāb)+(logā”2aālogā”2b).u(a)-u(b)=(a-b)+(\log_{2}a-\log_{2}b).u(a)āu(b)=(aāb)+(log2āaālog2āb). (1), (2)넼 ķØź» ģ°ė©“ u(a)āu(b)=132=ā(bāa)ā(logā”2bālogā”2a)=ā(bāa)(1+67)=ā137(bāa).u(a)-u(b)=\frac{13}{2} =-(b-a)-\bigl(\log_{2}b-\log_{2}a\bigr) =-(b-a)\Bigl(1+\frac{6}{7}\Bigr) =-\frac{13}{7}(b-a).u(a)āu(b)=213ā=ā(bāa)ā(log2ābālog2āa)=ā(bāa)(1+76ā)=ā713ā(bāa). ė°ė¼ģ bāa=ā72b-a=-\frac{7}{2}bāa=ā27ā. ė¤ģ (2)ģ ėģ ķė©“ logā”2bālogā”2a=67(bāa)=ā3ā āāā āba=2ā3=18.\log_{2}b-\log_{2}a=\frac{6}{7}(b-a)=-3 \;\Rightarrow\; \frac{b}{a}=2^{-3}=\frac{1}{8}.log2ābālog2āa=76ā(bāa)=ā3āabā=2ā3=81ā. ģ¦ b=a8b=\frac{a}{8}b=8aāģ“ėÆė” a8āa=ā72āa=4,Ā b=12 \frac{a}{8}-a=-\frac{7}{2}\Rightarrow a=4,\ b=\frac128aāāa=ā27āāa=4,Ā b=21ā. ģ“ģ ģ¬ź°ķ APQBAPQBAPQBģ ėģ“넼 구ķ©ėė¤. źø°ģøźø° ā1-1ā1ģø ė ķķģ AP,Ā BQAP,\ BQAP,Ā BQ ģ¬ģ“ģ ź±°ė¦¬(ģ¬ė¤ė¦¬ź¼“ģ ėģ“)ė ā£(a+logā”2a)ā(b+logā”2b)ā£2=13/22=1322.\frac{|(a+\log_{2}a)-(b+\log_{2}b)|}{\sqrt2}=\frac{13/2}{\sqrt2}=\frac{13}{2\sqrt2}.2āā£(a+log2āa)ā(b+log2āb)ā£ā=2ā13/2ā=22ā13ā. ė°ė³ źøøģ“ė¤ģ AP=ā£aālogā”2aā£2=4ā22=22=2,BQ=2āā£bālogā”2bā£=2(12ā(ā1))=322.AP=\frac{|a-\log_{2}a|}{\sqrt2}=\frac{4-2}{\sqrt2}=\frac{2}{\sqrt2}=\sqrt2,\qquad BQ=\sqrt2\,|b-\log_{2}b|=\sqrt2\Bigl(\tfrac12-(-1)\Bigr)=\frac{3\sqrt2}{2}.AP=2āā£aālog2āaā£ā=2ā4ā2ā=2ā2ā=2ā,BQ=2āā£bālog2ābā£=2ā(21āā(ā1))=232āā. ģ¬ė¤ė¦¬ź¼“ ėģ“ Area=AP+BQ2Ćėģ“=2+3222ā 1322=52/22ā 1322=658.\text{Area} =\frac{AP+BQ}{2}\times \text{ėģ“} =\frac{\sqrt2+\tfrac{3\sqrt2}{2}}{2}\cdot \frac{13}{2\sqrt2} =\frac{5\sqrt2/2}{2}\cdot \frac{13}{2\sqrt2} =\frac{65}{8}.Area=2AP+BQāĆėģ“=22ā+232āāāā 22ā13ā=252ā/2āā 22ā13ā=865ā. ė°ė¼ģ pq=658\dfrac{p}{q}=\dfrac{65}{8}qpā=865ā ģ“ź³ p+q=65+8=73p+q=65+8= \boxed{73}p+q=65+8=73āģ ėė¤. === User: \documentclassa4paper,12pt{article} === \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \usepackage{kotex} % ķźµģ“ \begin{document} \paragraph{28.} ģ¼ģ°ØķØģ \(f(x)\)ģ ģ¤ģ ģ 첓ģģ ėÆøė¶ź°ė„ķ ķØģ \(g(x)\)ź° ėŖØė ģ¤ģ \(x\)ģ ėķģ¬ \[ f(x)=g(x)-\tan g(x) \] ģ“ź³ ė¤ģ 씰걓ģ ė§ģ”±ģķ¬ ė, \(g'(0)\times\bigl(g(0)\bigr)^{2}\)ģ ź°ģ? \([4\text{ģ }]\) \medskip (ź°) \(f(0)=0,\quad f''(\pi)=0\). (ė) \(\sin g(\pi)=0,\quad \displaystyle\lim_{x\to\infty} g(x)=\frac{3\pi}{2}\). \medskip \noindent 볓기: (1) \(-12\)\quad (2) \(-6\)\quad (3) \(-1\)\quad (4) \(3\)\quad (5) \(9\). \end{document} === Assistant: ģ ėµ: ā6\boxed{-6}ā6ā === ģ ėµ: ā6\boxed{-6}ā6ā ģ¤ėŖ ģ ķµģ¬ė§ ģ ė¦¬ķź² ģµėė¤. # ź“ź³ģź³¼ ėķØģ f(x)=g(x)ātanā”g(x)ā¹fā²(x)=gā²(x)āsecā”2āā£g(x)āgā²(x)=āgā²(x)tanā”2āā£g(x).(1)f(x)=g(x)-\tan g(x)\quad\Longrightarrow\quad f'(x)=g'(x)-\sec^{2}\!g(x)\,g'(x)=-g'(x)\tan^{2}\!g(x). \tag{1}f(x)=g(x)ātang(x)ā¹fā²(x)=gā²(x)āsec2g(x)gā²(x)=āgā²(x)tan2g(x).(1) # x=0x=0x=0ģģ 씰걓 f(0)=0f(0)=0f(0)=0ģ“ėÆė” g(0)ātanā”g(0)=0ātanā”g(0)=g(0)g(0)-\tan g(0)=0\Rightarrow \tan g(0)=g(0)g(0)ātang(0)=0ātang(0)=g(0). (1)ģ x=0x=0x=0ģ ėģ ķė©“ fā²(0)=āgā²(0)tanā”2g(0)=āgā²(0)āg(0)2ā¹gā²(0)āg(0)2=āāfā²(0).(2)f'(0)=-g'(0)\tan^{2}g(0)=-g'(0)\,g(0)^{2} \quad\Longrightarrow\quad g'(0)\,g(0)^{2}=-\,f'(0). \tag{2}fā²(0)=āgā²(0)tan2g(0)=āgā²(0)g(0)2ā¹gā²(0)g(0)2=āfā²(0).(2) ė°ė¼ģ ė¬¼ģź°ģ āfā²(0)-f'(0)āfā²(0)ė§ źµ¬ķė©“ ė©ėė¤. # x=Ļx=\pix=Ļģģģ 씰걓ģ¼ė” fffģ ź³ģ ź²°ģ fffė ģ¼ģ°Øė¤ķģģ“ėÆė” f(x)=ax3+bx2+cx+df(x)=ax^{3}+bx^{2}+cx+df(x)=ax3+bx2+cx+d. (ź°) fā²ā²(Ļ)=0ā6aĻ+2b=0āb=ā3aĻf''(\pi)=0\Rightarrow 6a\pi+2b=0\Rightarrow b=-3a\pifā²ā²(Ļ)=0ā6aĻ+2b=0āb=ā3aĻ. (ė) sinā”g(Ļ)=0āg(Ļ)=nĻĀ (nāZ)\sin g(\pi)=0\Rightarrow g(\pi)=n\pi\ (n\in\mathbb{Z})sing(Ļ)=0āg(Ļ)=nĻĀ (nāZ). ģ“ė tanā”g(Ļ)=0\tan g(\pi)=0tang(Ļ)=0ģ“ėÆė” f(Ļ)=g(Ļ)ātanā”g(Ļ)=nĻ.f(\pi)=g(\pi)-\tan g(\pi)=n\pi.f(Ļ)=g(Ļ)ātang(Ļ)=nĻ. ėķ (1)ė”ė¶ķ° fā²(Ļ)=āgā²(Ļ)tanā”2g(Ļ)=0f'(\pi)=-g'(\pi)\tan^{2}g(\pi)=0fā²(Ļ)=āgā²(Ļ)tan2g(Ļ)=0ģ“ėÆė” fā²(Ļ)=3aĻ2+2bĻ+c=0āc=3aĻ2.f'(\pi)=3a\pi^{2}+2b\pi+c=0\Rightarrow c=3a\pi^{2}.fā²(Ļ)=3aĻ2+2bĻ+c=0āc=3aĻ2. ė°ė¼ģ f(Ļ)=aĻ3+bĻ2+cĻ=aĻ3ā3aĻ3+3aĻ3=aĻ3=nĻāa=nĻ2.f(\pi)=a\pi^{3}+b\pi^{2}+c\pi =a\pi^{3}-3a\pi^{3}+3a\pi^{3}=a\pi^{3}=n\pi \Rightarrow a=\frac{n}{\pi^{2}}.f(Ļ)=aĻ3+bĻ2+cĻ=aĻ3ā3aĻ3+3aĻ3=aĻ3=nĻāa=Ļ2nā. # limā”xāāg(x)=3Ļ2\displaystyle\lim_{x\to\infty}g(x)=\frac{3\pi}{2}xāālimāg(x)=23Ļāė”ė¶ķ° nnn ź²°ģ ķØģ h(u)=uātanā”uh(u)=u-\tan uh(u)=uātanuė ź° źµ¬ź° (Ļ2+kĻ,Ā 3Ļ2+kĻ)(\frac{\pi}{2}+k\pi,\ \frac{3\pi}{2}+k\pi)(2Ļā+kĻ,Ā 23Ļā+kĻ)ģģ ėØģ”°ź°ģė” R\mathbb{R}Rģ ėķ ģ ėØģ¬ģ ėė¤. limā”xāāg(x)=3Ļ2\lim_{x\to\infty}g(x)=\frac{3\pi}{2}limxāāāg(x)=23Ļāģ“ ģ±ė¦½ķė ¤ė©“ xxxź° ģ»¤ģ§ģė” g(x)g(x)g(x)ź° źµ¬ź° (3Ļ2,Ā 5Ļ2)(\frac{3\pi}{2},\ \frac{5\pi}{2})(23Ļā,Ā 25Ļā) ģŖ½ģģ 3Ļ2\frac{3\pi}{2}23Ļāė” ģ ź·¼ķ“ģ¼ ķź³ , ģ“ė f(x)=g(x)ātanā”g(x)f(x)=g(x)-\tan g(x)f(x)=g(x)ātang(x)ė xāāx\to\inftyxāāģģ +ā+\infty+āė” ź°ģ¼ ķ©ėė¤. ė°ė¼ģ fffģ ģµź³ ģ°Øź³ģ a>0a>0a>0, ź³§ n>0n>0n>0. ė x=Ļx=\pix=Ļģģ g(Ļ)=nĻg(\pi)=n\pig(Ļ)=nĻź° ģ źµ¬ź° (3Ļ2,Ā 5Ļ2)(\frac{3\pi}{2},\ \frac{5\pi}{2})(23Ļā,Ā 25Ļā) ģģ ģģ“ģ¼ ķėÆė” ź°ė„ķ ģ ģė n=2n=2n=2ėæģ ėė¤. ź²°ė” ģ ģ¼ė” a=2Ļ2a=\dfrac{2}{\pi^{2}}a=Ļ22ā, c=3aĻ2=6c=3a\pi^{2}=6c=3aĻ2=6. # ė§ė¬“리 fā²(0)=c=6f'(0)=c=6fā²(0)=c=6. (2)ģ ģķ“ gā²(0)āg(0)2=āfā²(0)=ā6.g'(0)\,g(0)^{2}=-f'(0)=-6.gā²(0)g(0)2=āfā²(0)=ā6. 볓기ģ ģ¼ģ¹: ā6\boxed{-6}ā6ā (ģ ģ§ 2). === User: \documentclassa4paper,12pt{article} === \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \usepackage{kotex} % ķźµģ“ \begin{document} \paragraph{29.} 첫째ķģ“ ģģģ“ź³ ź³µė¹ź° ģ 리ģģø ė±ė¹ģģ“ \(\{a_n\}\)ģ ėķģ¬ źøģ \(\displaystyle \sum_{n=1}^{\infty} a_n\)ģ“ ģė “ķź³ , ģģ“ \(\{a_n\}\)ģ“ ė¤ģ 씰걓ģ ė§ģ”±ģķØė¤. \medskip (ź°) \(a_1+a_2<10\). (ė) ģģ“ \(\{a_n\}\)ģ ģ ģģø ķģ ź°ģė 3ģ“ź³ , ģ“ ģø ķģ ź³±ģ \(216\)ģ“ė¤. \medskip \(\displaystyle \sum_{n=1}^{\infty} a_n=\dfrac{q}{p}\)ģ¼ ė, \(p+q\)ģ ź°ģ 구ķģģ¤. \((\text{ėØ, } p \text{ģ } q \text{ė ģė”ģģø ģģ°ģģ“ė¤.})\) \([4\text{ģ }]\) \end{document} === Assistant: ģ ėµ: 91\boxed{91}91ā === ģ ėµ: 91\boxed{91}91ā ķģ“ģ ķµģ¬ģ āģ ģ ķģ“ ģ ķķ 3ź°āė¼ė 씰걓ģ ė±ė¹ģģ“ģ ė¶ėŖØ ģź±° 씰걓ģ¼ė” ķ“ģķė ź²ģ ėė¤. ė±ė¹ģģ“ģ an=a1rānā1a_n=a_1 r^{\,n-1}anā=a1ārnā1ė¼ ėź³ , ź³µė¹ė„¼ źø°ģ½ė¶ģ r=uvr=\dfrac{u}{v}r=vuā (u,vāZ,Ā gcdā”(u,v)=1)(u,v\in\mathbb Z,\ \gcd(u,v)=1)(u,vāZ,Ā gcd(u,v)=1)ė” ģėė¤. ģė “ķėÆė” ā£rā£<1|r|<1ā£rā£<1, 첫째ķ a1>0a_1>0a1ā>0ģ ėė¤. ===== 1) ģ ģ ķģ“ ģ ķķ 3ź° ===== ā ā ģė” ģ°ģķ 3ź° ģ“ė¤ kkkģģ aka_kakāź° ģ ģė¼ź³ ķ©ģė¤. ź·ø ė¤ģ ķ ak+1=akā uva_{k+1}=a_k\cdot \dfrac{u}{v}ak+1ā=akāā vuāź° ģ ģģ“ė ¤ė©“ vā£akv\mid a_kvā£akā, ė¤ģ ak+2=akā u2v2a_{k+2}=a_k\cdot\dfrac{u^2}{v^2}ak+2ā=akāā v2u2āź° ģ ģģ“ė ¤ė©“ v2ā£akv^2\mid a_kv2ā£akāź° ķģķ©ėė¤. ź·øė¦¬ź³ ģ ģ ķģ“ ė ģ“ģ ģźø°ģ§ ģģ¼ė ¤ė©“ v3ā¤akv^3\nmid a_kv3ā¤akāģ¬ģ¼ ķ©ėė¤. ė°ė¼ģ ģ ģ ķģ ė°ė” ak,ak+1,ak+2a_k, a_{k+1}, a_{k+2}akā,ak+1ā,ak+2ā ģ°ģ 3ź°ėæģ ėė¤. ģ“ė ak=Nv2(NāZā{0}),ak+1=Nvu,ak+2=Nu2.a_k=Nv^2\quad(N\in\mathbb Z\setminus\{0\}),\quad a_{k+1} = Nvu,\quad a_{k+2}=Nu^2.akā=Nv2(NāZā{0}),ak+1ā=Nvu,ak+2ā=Nu2. ģø ģ ģ ķģ ź³±ģ akak+1ak+2=N3āv3u3.a_k a_{k+1} a_{k+2}=N^3\,v^3u^3.akāak+1āak+2ā=N3v3u3. 문ģ ģģ ź·ø ź³±ģ“ 216=63216=6^3216=63ģ“ėÆė” ā£Nvuā£=6.(ā )|Nvu|=6. \tag{ā }ā£Nvuā£=6.(ā ) ===== 2) ===== š 1 + š 2 < 10 a 1 ā +a 2 ā <10 ģ”°ź±“ģ“ ź³µė¹ģ ė¶ķøė„¼ ź²°ģ ź³µė¹ź° ģģģ“ė©“ ėŖØė ķģ“ ģģģ“ź³ , (ā )(ā )(ā )ģ ź²°ķ©ķ“ 볓멓 a1r2=6Ā āĀ a1+a2=a1(1+r)=6r2(1+r)ā„12a_1 r^2 = 6 \ \Rightarrow\ a_1+a_2=a_1(1+r) = \frac{6}{r^2}(1+r)\ge 12a1ār2=6Ā āĀ a1ā+a2ā=a1ā(1+r)=r26ā(1+r)ā„12 ź° ėģ“ a1+a2<10a_1+a_2<10a1ā+a2ā<10ģ ėŖØģģ ėė¤. ź·øė¬ėÆė” ź³µė¹ė ģģģ¬ģ¼ ķ©ėė¤. ģ ģ ķģ“ ģ°ģ 3ź°ė¼ė ģ ģ ź°ģķė©“, ģģ°ģ¤ė½ź² ģ ģ ķ ģģ¹ė a2,a3,a4a_2,a_3,a_4a2ā,a3ā,a4āź° ė©ėė¤(첫ķģ ģ ģź° ģė ģ ģģ). ģ“ ź²½ģ° ė¶ķøė (ā,+,ā)(-,+,-)(ā,+,ā)ė” ź³±ģ“ +++ź° ėģ“ 216216216ź³¼ ģ¼ģ¹ķ©ėė¤. ģ“ģ r=āuvĀ (0<u<v,Ā gcdā”(u,v)=1)r=-\dfrac{u}{v}\ (0<u<v,\ \gcd(u,v)=1)r=āvuāĀ (0<u<v,Ā gcd(u,v)=1), ź·øė¦¬ź³ (ā )(ā )(ā )ė”ė¶ķ° ź°ė„ķ (u,v,N)(u,v,N)(u,v,N)ģ ģ°¾ģµėė¤. ā£Nvuā£=6|Nvu|=6ā£Nvuā£=6ģ“ėÆė” vuvuvuė 1,2,3,61,2,3,61,2,3,6 ģ¤ ķė, Ā u<v\ u<vĀ u<v넼 ė§ģ”±ķ“ģ¼ ķ©ėė¤. ź°ė„ķ (u,v)(u,v)(u,v)ė (1,2),Ā (1,3),Ā (2,3),Ā (1,6).(1,2),\ (1,3),\ (2,3),\ (1,6).(1,2),Ā (1,3),Ā (2,3),Ā (1,6). ģ“ė a1+a2a_1+a_2a1ā+a2ā넼 u,vu,vu,vė” ģ§ģ ģ°ė©“(ģ ģ ķģ“ a2,a3,a4a_2,a_3,a_4a2ā,a3ā,a4āģ¼ ė ź³ģ°) a1+a2=6āv(vāu)u2.a_1+a_2 =6\,\frac{v(v-u)}{u^2}.a1ā+a2ā=6u2v(vāu)ā. ź° ź²½ģ°ė„¼ ėģ ķė©“ (u,v)=(1,2):6ā 2(1)1=12(Ć)(u,v)=(1,3):6ā 3(2)1=36(Ć)(u,v)=(1,6):6ā 6(5)1=180(Ć)(u,v)=(2,3):6ā 3(1)4=184=92(ā)\begin{array}{lcl} (u,v)=(1,2): & 6\cdot \dfrac{2(1)}{1} = 12 &(\times)\\[4pt] (u,v)=(1,3): & 6\cdot \dfrac{3(2)}{1} = 36 &(\times)\\[4pt] (u,v)=(1,6): & 6\cdot \dfrac{6(5)}{1} = 180 &(\times)\\[4pt] (u,v)=(2,3): & 6\cdot \dfrac{3(1)}{4} = \dfrac{18}{4}=\dfrac{9}{2} &(\checkmark) \end{array}(u,v)=(1,2):(u,v)=(1,3):(u,v)=(1,6):(u,v)=(2,3):ā6ā 12(1)ā=126ā 13(2)ā=366ā 16(5)ā=1806ā 43(1)ā=418ā=29āā(Ć)(Ć)(Ć)(ā)ā ė°ė¼ģ ģ ģ¼ķź² ģ±ė¦½ķė ź²ģ r=ā23.r=-\frac{2}{3}.r=ā32ā. ģ“ė (ā )(ā )(ā )ģģ N=ā6vu=ā63ā 2=ā1N=-\dfrac{6}{vu}=-\dfrac{6}{3\cdot2}=-1N=āvu6ā=ā3ā 26ā=ā1ģ“ ėģ“ a2=Nv2=ā9,a3=Nvu=6,a4=Nu2=ā4,a_2=Nv^2=-9,\quad a_3=Nvu=6,\quad a_4=Nu^2=-4,a2ā=Nv2=ā9,a3ā=Nvu=6,a4ā=Nu2=ā4, ź·øė¦¬ź³ a1=a2r=ā9ā2/3=272a_1=\dfrac{a_2}{r}=\dfrac{-9}{-2/3}=\dfrac{27}{2}a1ā=ra2āā=ā2/3ā9ā=227ā. ź²ģ°ķė©“ a1+a2=272ā9=92<10a_1+a_2=\dfrac{27}{2}-9=\dfrac{9}{2}<10a1ā+a2ā=227āā9=29ā<10, ģ ģ ķģ ģ ķķ ģø ź°, ź³±ģ (ā9)ā 6ā (ā4)=216(-9)\cdot 6\cdot(-4)=216(ā9)ā 6ā (ā4)=216ģ¼ė” 씰걓과 ģ¼ģ¹ķ©ėė¤. ===== 3) źøģģ ķ© ===== ān=1āan=a11ār=272ā1ā(ā2/3)ā=27253=8110.\sum_{n=1}^{\infty} a_n =\frac{a_1}{1-r} =\frac{\dfrac{27}{2}}{\,1-(-2/3)\,} =\frac{\dfrac{27}{2}}{\dfrac{5}{3}} =\frac{81}{10}.n=1āāāanā=1āra1āā=1ā(ā2/3)227āā=35ā227āā=1081ā. ģ¦ qp=8110\displaystyle \frac{q}{p}=\frac{81}{10}pqā=1081āģ“ėÆė” p+q=10+81=91p+q=10+81=\boxed{91}p+q=10+81=91āģ ėė¤. === User: \documentclassa4paper,12pt{article} === \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \usepackage{kotex} % ķźµģ“ \begin{document} \paragraph{30.} ģ¤ģ ģ 첓ģ ģ§ķ©ģģ ėÆøė¶ź°ė„ķ ķØģ \(f(x)\)ģ ģ¤ģ ģ 첓ģ ģ§ķ©ģģ ģ°ģģø ķØģ \(g(x)\)ė ėŖØė ģ¤ģ \(x\)ģ ėķģ¬ \[ f(x)=\ln\!\left(\frac{g(x)}{1+x f'(x)}\right) \] 넼 ė§ģ”±ģķØė¤. \(f(1)=4\ln 2\)ģ“ź³ \[ \int_{1}^{2} g(x)\,dx=34,\qquad \int_{1}^{2} x\,g(x)\,dx=53 \] ģ¼ ė, \[ \int_{1}^{2} x\,e^{f(x)}\,dx \] ģ ź°ģ 구ķģģ¤. \([4\text{ģ }]\) \end{document} === Assistant: ģ ėµģ 31\boxed{31}31āģ ėė¤. === ģ ėµģ 31\boxed{31}31āģ ėė¤. ķģ“ ź³¼ģ ģ ź°ėØėŖ ė£ķź² ģ ė¦¬ķź² ģµėė¤. 주ģ“ģ§ ź“ź³ģ f(x)=lnā”āā£(g(x)1+xfā²(x))f(x)=\ln\!\left(\frac{g(x)}{1+x f'(x)}\right)f(x)=ln(1+xfā²(x)g(x)ā) ģ ģ§ģķķė©“ ef(x)=g(x)1+xfā²(x).e^{f(x)}=\frac{g(x)}{1+x f'(x)}.ef(x)=1+xfā²(x)g(x)ā. ģ“넼 ė³ķķ“ ė ź°ģ§ ėÆøė¶ ķė±ģģ ģ»ģµėė¤. # gggģ ģ ė¶ź³¼ ź²½ź³ź°ģ ģė ģ ģė³ģ 1+xfā²(x)1+xf'(x)1+xfā²(x)넼 ź³±ķė©“ g(x)=ef(x)+xef(x)fā²(x)=ddx(xef(x)).g(x)=e^{f(x)}+x e^{f(x)}f'(x)=\frac{d}{dx}\bigl(x e^{f(x)}\bigr).g(x)=ef(x)+xef(x)fā²(x)=dxdā(xef(x)). ė°ė¼ģ ā«12g(x)ādx=[xef(x)]12.\int_{1}^{2} g(x)\,dx=\Bigl[x e^{f(x)}\Bigr]_{1}^{2}.ā«12āg(x)dx=[xef(x)]12ā. 문ģ ģģ ā«12g(x)ādx=34,Ā f(1)=4lnā”2\int_{1}^{2} g(x)\,dx=34,\ f(1)=4\ln2ā«12āg(x)dx=34,Ā f(1)=4ln2ģ“ėÆė” ef(1)=16e^{f(1)}=16ef(1)=16. ė°ė¼ģ 2ef(2)ā16=34Ā āĀ ef(2)=25.2e^{f(2)}-16=34\ \Rightarrow\ e^{f(2)}=25.2ef(2)ā16=34Ā āĀ ef(2)=25. # źµ¬ķź³ ģ ķė ģ ė¶ģ¼ė”ģ ķģ ź“ź³ģģ xxx넼 ź³±ķź³ ģ ķė±ģģ ķģ©ķė©“ xg(x)=xef(x)+x2ef(x)fā²(x)=ddx(x2ef(x))āxef(x).x g(x)=x e^{f(x)}+x^{2}e^{f(x)}f'(x) =\frac{d}{dx}\bigl(x^{2}e^{f(x)}\bigr)-x e^{f(x)}.xg(x)=xef(x)+x2ef(x)fā²(x)=dxdā(x2ef(x))āxef(x). ė°ė¼ģ ā«12xef(x)ādx=[x2ef(x)]12āā«12xg(x)ādx.\int_{1}^{2} x e^{f(x)}\,dx =\Bigl[x^{2}e^{f(x)}\Bigr]_{1}^{2}-\int_{1}^{2} x g(x)\,dx.ā«12āxef(x)dx=[x2ef(x)]12āāā«12āxg(x)dx. 주ģ“ģ§ ā«12xg(x)ādx=53\int_{1}^{2} x g(x)\,dx=53ā«12āxg(x)dx=53ź³¼ ef(1)=16,Ā ef(2)=25e^{f(1)}=16,\ e^{f(2)}=25ef(1)=16,Ā ef(2)=25ģ ėģ ķė©“ [x2ef(x)]12=4ā 25ā1ā 16=100ā16=84,\Bigl[x^{2}e^{f(x)}\Bigr]_{1}^{2}=4\cdot25-1\cdot16=100-16=84,[x2ef(x)]12ā=4ā 25ā1ā 16=100ā16=84, ā«12xef(x)ādx=84ā53=31.\int_{1}^{2} x e^{f(x)}\,dx=84-53=31.ā«12āxef(x)dx=84ā53=31. ė°ė¼ģ ā«12xāef(x)ādx=31\displaystyle \int_{1}^{2} x\,e^{f(x)}\,dx=31ā«12āxef(x)dx=31ģ ėė¤. == References == <references /> [[Category:ChatGPT Shares]] [[Category:openai]]
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite web
(
edit
)
Module:Citation/CS1
(
edit
)
Module:Citation/CS1/COinS
(
edit
)
Module:Citation/CS1/Configuration
(
edit
)
Module:Citation/CS1/Date validation
(
edit
)
Module:Citation/CS1/Identifiers
(
edit
)
Module:Citation/CS1/Utilities
(
edit
)
Module:Citation/CS1/Whitelist
(
edit
)
Module:Citation/CS1/styles.css
(
edit
)